AD-A118 072 A;Rl:gfge ;ngcgzbrscn WRIGHT-PATTERSON AFB OH SCHOO==ETC F/6 14/3 -
GHT R ER PROTOTYPE FOR THE INFLIGHT PHYSIOLO -
R B 10L0GICAL D==ETC(U)
UNCLASSIFIED AFIT/GCS/EE/B2M=5

loe3
a0a

' — B

* A
a v
N

———

PME FILE COPY

DTIC

ELECTE W
SAUG 1108
DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY (ATC) — B

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Puttersor{ Air Force Base, Ohio

82 08 11 067

AFIT/GCS/EE/82M~5

AN INFLIGHT RECORDER PROTOTYPE
FOR THE
INFLIGHT PHYSIOLOGICAL DATA
ACQUISITION SYSTEM III

THESILIS
AFIT/GCS/EE/ 82M-5 Robert E. Meisner
Capt USAF

Approved for public release; distribution unlimited

AFIT/GCS/EE/82M~5

AN INFLIGHT RECORDER PROTOTYPE
FOR THE
INFLIGHT PHYSIOLOGICAL DATA
ACQUISITION SYSTEM III

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the

Requirements for the Degree of

Accession For

- S _
NIIS auas x
DIIC Tan a

v

L
RIVER NS IS

Master of Science

by e

Br__.. .
Robert E. Meisner Dot
Capt USAF frois L

e

Graduate Computer Systems i

S

February 1982

Approved for public release; distribution unlimited

Preface i

This thesis is another in the long line of efforts aimed
at building a better Inflight Recorder (IR) for the Inflight

Physiological Data Acquisition System (IFPDAS). Previous

theses analyzed different aspects of the IR problems and made
recommendations for construction of an IR prototype. Some
recommendations were followed, while others were updated to
take advantage of new advances in IC designs. The primary

product of this thesis is a hardware prototype for the IR.

With the hardware built, continuing theses can concentrate on
software development. i
The people who helped bring the IR prototype to fruition

are too numerous to mentiom individually. They include

faculty, students, technicians and corporate representatives.
There are, however, a few people who deserve individual
recognition for the special attention they gave me. First of
all I must thank Capt Hall and Lt Shackford of the School of
Aerospce Medicine for insuring that the project was properly
financed. Thanks also to Mike West of the Air Force Avionics X
Lab. His expertise and willingness to help were invaluable
(and I truly mean invaluable) in developing Magnetic Bubble
Memory hardware and software described in this thesis. I can
aot forget Orville Wright, His timely procurement of hard to
find parts was instrumental to finishing this thesis. Thanks

to Major Alan Ross, Dr Mathew Kabrisky, and Captain Larry

ii

'] :

Kizer for their guidance throughout the thesis. I whole-
heartedly recommend them as advisors to future degree
candidates. Although not a member of my thesis committee, I
appreciate the time that Major Walt Seward took to advise and
critique my work.

Credit for the quality of this thesis must also go to
my poker/bowling budies. Their hard fought attempts to lead
me into financial ruin provided an important link with
reality. More seriously, I would like to acknowledge the
help and understanding given me by my loving wife, Celeste,
and daughter, Elizabeth. There is a direct correlation
between their support for my endeavors and my acedemic
accomplishments, I look forward to graduation so that we can

spend more time together,

Contents ‘
Page

Preface - ii 4
List Oof FigBUTres .+ ¢ + o o « « o o o o o o s o o o o a vi
‘ List of Tables e ¢ e e e o e & @ 2 o s e s o e & o o o wii :

List of Abbreviations . « o « o o ¢ o o o o o e o o o o V11

ADSEXract & ¢ ¢« o o o o o 4 o o o a « o o o o o6 e s 4 a xi

—

I. Introduction e o o & o s e e s & s e o 4 o s e o o

Background . . « ¢ ¢« ¢ ¢ o o o o o & ¢ o o o & o
Current System . o« « « ¢ o o o o s o o o o o o
Previous Studies .« . « ¢ ¢ ¢ o « o o o o o o+ o

Problem Statement . « ¢ o o ¢ o« o o o o o o s & &

Scope and Assumptions .« . « ¢ o ¢ ¢ o 4 4 6 o 0 o o

Approach & ¢ ¢« &« o o o 4 4 s 4 e s e e e e e e e

Sequence of Presentation .« .« « ¢« « o o o o o o &

OV BN

II. Hardware Rcquirements Analysis . o ¢ ¢ o o o « o & 8
Required Characteristics . o+ o &+ o o o o o o o« o o 8
Desirable Characteristics . .« « « « « « & o o o o 10
Preliminary Architecture« « & o o o s s o = 12
IC TechnologY . ¢ « & & ¢ o o o o o o s o o o o o« 14
Evaluation .« ¢ o ¢ 4 o o o o s o 6 o o o o o 4 o 18

Main ProcesSSor .« « o« « o s o o o o o o o o o o 18
Secondary Storage . « ¢ + o o 4 e e e 6 e e 25
Program Memory . « o o ¢ o ¢ ¢ o o o o o o o 32
Data Acquisition POrts . « o« o o ¢ o« o o« o« « 34
Buffer MemOTy « o ¢ ¢ o o o o 2 » o o o o & = 34
Conclusions .« o « « o o o o o o s o o o o 2 o o o o 36

III. Prototype Comstruction . ¢ & ¢ ¢ ¢ ¢ ¢ o ¢ « o« o & 38

Operating Voltage « o « o o o o « o « o o o s o o 39
IC Technology MixX . . ¢ &+ 4 o ¢ & & ¢ o o « o ¢ o« o 39
Board Layout « « + o ¢ « o ¢ s o o o & o o o 5 o o 41
Bus Structure . « ¢« ¢ ¢ o ¢ o o o ¢ s o o o o o o 42
CPU & & o ¢ o o o o s o s o o o o o s o o o o o o 44

System Clock + + &« & o o o & o ¢ o o o o 0 o 44

System Reset . . ¢« ¢ ¢ ¢ ¢ ¢ o o o o o ¢ o o 46
Wait State Generator . « . « « « o o« « o o » 47
Bus Demultiplexer . . + &+ &+ o s o o o o o o @ 49
Primary MemoTy ¢ o ¢ o o o ¢ s o o o o o o o o & 51
Program Memory . . o+ o ¢ o ¢ o o o o « o o o 52

Buffer Memory . . ¢ o o ¢ + o« ¢ ¢ o o s o o 54

Peripheral Devices .+ o v ¢ o o o o o o o o o o o 56

TiMEES o o « ¢ o o o o o e o o o o o s o o o 58
Genexral I/0 v . & v v 4 e e e o o o e o o o 60
A/D Converter . « + « o o o o o o o o o o o 61
MBM e o o o o 8 s s & & e e & & o 6 o o & o o 63
Interrupt Structure . . o+ o ¢ o « o o s o o o o o o 65
ConcluBioN « +v o o « o o o o s o o o« o o o o o o o 68
IV. Hardware Verification Program . . « « « « o« s o« o & 69
Buffer Memory . « ¢ ¢« o o ¢ o o o o o o & o o « « 70
TLIMELS o o o o o o o o o o s o o o o o s o o o o o« 71
Timer 1 e o ¢ o s & o o e o 4 4 e o o o & o 71
Timer O « ¢ o o o o« o o o o o o o o o« o o o 72
General I/0 v v v ¢ o ¢ o ¢ o o o o o o o o o e o 73
A/D CONVETLETr .« « o o o o o o o o o s o o o o o o @ 74
BMC & v ¢ ¢ o o ¢ o o o o o o o o o & o 8 o o ¢ o 76
ConclusSion « & 4 ¢ o ¢ o & o o o o °© o e o o o o o 77
V. Conclusions and Recommendations . . « « o« ¢ « o « & 85 ;o
ConcluSionNs « o o« ¢ o o o s o s o o o s o o o « o 86 :
Recommendations « o« o o o o s o o o o s o o o o o 88

Bibliography « o « ¢ ¢ ¢ o ¢ o o s o o &« o o o - o o o 91
Appendix A: IR Prototype Schematic . . « ¢ ¢ ¢« ¢ « « & 93
Appendix B: EEPROM Programmer . « o« « o « o« o o o + o &« 99
Appendix C: MBM Interactive Development System 155
Appendix D: IFIDAS IR Debugging Tool « . . « . 236
Appendix E: Manufacturers' Data Sheets 256

Vit o o o o o o o« o o o s o o « s s s s o o o s o o o 257

List of Figures

Figure

1. A Preliminary IR PMS
2. The Proposed New IR ., . ¢« + « .« . .
3. Major Component Map of IR Prototype
4. CPU v ¢ ¢ o o ¢« o o o o o o o o o o
5. Wait State Generator . . « .« « .«
6. EEPROM . . ¢ ¢ o « ¢« o o o o o o
7. Conventional HNVM3008 Interface . .
8. RAM . ¢« ¢« ¢« ¢ o o o ¢ o o o o o o &
9. I/0 Ports, Timers, and A/D Converter
10, MBM . & & ¢ ¢ o o o o o o o o o o
11, IR Prototype Verification Program .
12, IR Prototype Schematic . . « . . .
13. EEPROM Programmer Schematic
14, EEPROM Programmer Flowchart
15. EEPROM Programmer Software
16. BPK=-72 to S5-100 Interface Schematic
17. MIDS Software . « « « o o s o o o @
18. MBM Software . « ¢ ¢ ¢ o o« o o o
19. RDT I/0 Buffers . . . « + « o o o &
20, Data Bus Monitor . .« o+« o« o« o ¢ o« o
21. Address Bus Monitor . . « « « o « &
22, IR Reset Function . . + + & « o o =
23. Single Step Functionm . . « « « + o
24. Memory/Peripheral I/O0 Circuit . . .

25. RDT IC Functional Groupings

Page
13
36
41
45
48

50

55
59
64
78
94
106
109
110
160
162
196
242
245
245
248
250

252

254

P

Table

II.

III.

1v.

VI.

VII.

VIII.

IX.

XI1.

XII.

XIII,

X1v,.

Xv.

XvVI.

List of Tables

Sensor Sampling Rates
Comparison of Logic Families . . .
Comparison of Microprocessors . .

Microprocessor Criteria Ratings .

Comparison of Secondary Storage Devi

IC Family Voltage Characteristics
IR Bus Connector Definition , . .
I/0 Port Mapping . . « + « &« o« « &
IR Interrupt Structure
EEPROM Programmer Selectable Ports
EEPROM Programmer IC Listing . . .

§-100 to EEPROM Programmer
Interface Definition .,

Selectable MBM I/0 Ports

BPK-72 to S$-100 IC Listing

BPK-72 to S-100 Interface Definition

RDT IC Listing . &+ o ¢ o« ¢ o« o «

Page

11
15
20
24
26
40
43
57
66
102

104

105

158

159

159

255

S

List of Abbreviations

AFIT US Air Force Institute of Technology,
Wright-Patterson AFB, OH

ALE Address Latch Enable Strobe (active high)

A/D Analog-to-Digital]

At# Reference to Specific Bit (##) of the Address Bus

BACK* Bus Request Acknowledgment Signal (active low)

BMC Bubble Memory Controller

BREQ¥* Bus Request Signal (active low)

CcCD Charge Coupled Device

CDOS Cromemco Disk Operating System

CLK System Clock

CMOS Complementary Metal-Oxide Semiconductor

cPM Control Program for Microprocessors

CPU Central Processing Unit

CsS* Chip Select (active low)

D# Reference to Specific Bit (#) of the Data Bus

ECG Electrocardiogran

EEPROM Electrically-Erasable Programmable Read Only Memory

EPROM Erasable Programmable Read Only Memory

FIFO First-In / First-Out

FF Flip-Flop

GND Electrical Ground

Gx Lateral Acceleration

Gy Vertical Acceleration

Gz Longitudinal Acceleration

HMOS
IFPDAS
IC
INTA*
INTR*

I0/M*

IR
1/0
KIPS
LSTTL
LTTL
MBM

MIDS

NMI*
PMS
PROM
P2CMOS
RAM
RDT
RD*
RFSH*
ROM
RSTx*
so, sl

SAM

High-performance Metal-Oxide Semiconductor
Inflight Physiological Data Acquisition System
Integrated Circuit

Interrupt Acknowledge (active low)

Maskable Interrupt (active low) {
Type of Machine Reference; high signal implies
access to input/output device, low implies memory
access.

Inflight Recorder

Inpuc / OQutput

Thousands of Instructions Per Second
Low~power Shottky Transistor-Transistor Logic
Low-power Transistor-Transistor Logic
Magnetic Bubble Memory

Magnetic Bubble Memory Interactive Development
System

Non-Maskable Interrupt (active low)
Processor-Memory-Switch

Programmable Read Only Memory

Poly-Planar Complementary Metal-0Oxide Semiconductor
Random Access Memory

Inflight Recorder Debugging Tool

Read Strobe (active low)

Dynamic Memory Refresh Signal (active low)

Read Only Memory

Maskable Interrupts, x = A, B, or C (active low)

Microprocessor Machine Cycle Status

US Air Force School of Aerospace Medicine,
Brooks AFB, TX

TTL Transistor-Transistor Logic
WR* Write Strobe (active 1low)
XWAIT* Processor Wait Request Signal (active low)

Abstract

A prototype for the Inflight Recorder component of the
Inflight Physiological Data Acquisition System was built.,
The Inflight Recorder is a remote data acquisition computer
for sampling physiological data., Characteristics of the
recorder's design were solid-state, microprocessor
controlled, expandability, 16 sensor inputs, and 122 samples
per second. Demonstration of battery operation for four
hours and unobstructive size characteristics awaits further
testing.

Following a hardware requirements analysis, the
prototype was built using Complementary Metal Oxide
Semiconductor (CMOS) integrated circuits., Components
featured in the design were a CMOS microprocessor;
Electrically Erasable Programmable Read Only Memories
(EEPROM); a monolithic, 16 channel, analog to digital
converter; and Magnetic Bubble Memories (MBM).

In addition to building the IR prototype, several
development tools were constructed. One was a EEPROM
Programmer. Another was an MBM Interactive Development
System. A third was a hardware front panel for debugging IR
software,. User's manuals for these tools appear 1in

appendices to the thesis,

An Inflight Recorder Prototype for the
Inflight Physiological Da‘~ Acquisition System III

I Introduction

One of the missions of the United States Air Force
School of Aerospace Medicine (SAM) is to develop effective
life support systems for the crews of high performance
aircrafec. To accomplish this task, SAM collects
environmental and physiological data during actual sorties.
Upon mission completion, this data is added to a historical
data base and correlated with data from past missions. This
data collection and analysis system is known as the Inflight
Physiological Data Acquisition System (IFPDAS). Since the
IFPDAS is the primary method for collecting inflight
environmental and physiological data, it is an important tool
for evaluating the effectiveness of Air Force life support

systems.

Background

The IFPDAS is composed of three subsystems, These are
the Inflight Recorder (IR), the field processing facility,
and the laboratory processing facility. The IR is the data
collection component of the IFPDAS, while the other two
subsystems function as data analyzers (Ref 8). The current

IFPDAS is of limited usefulness because of present IR

weaknesses. These weaknesses and the development of a
prototype to overcome them, motivates this thesis research.

Current System., From its inception, the IFPDAS has been

plagued by an inadequate IR. This was true for the IFPDAS I
and is still true for the current model, IFPDAS II. The
inadequacy of the IR results from its hardware configuration
as a cassette tape recorder interfaced to a signal éampling
device. This configuration caused several problems, which

were revealed in the IFPDAS I (Ref 16:1-2). Five of the

problems were:

1. The cassette drive mechanism stopped during high-G
maneuvers, causing discontinuities in data
recording.

2., The IR was capable of recording only the follcwing
seven signals:
a. a time code for correlating samples,
b. pilot voice,
Electrocardiogram (ECG),
cabin pressure,
. OXygen consumption,
. expired flow, and
g. vertical acceleration.
Additions and changes to these seven inputs were
impossible without a hardware redesign.

Mo A0
. o

3. All data manipulation was done with analog signals.
This degraded the samples as noise was introduced
during each stage of data manipulation.

4, The IR was constructed with discrete components,
making it less reliable thanm a system based on
integrated circuits (IC's).

5. Additionally, discrete components added to system
bulk, undesirably restricting pilot movement.

In an effort to correct some of the problems outiined
above, The Pacific Missile Test Center, Microelectronics

Branch, at Point Mugu Naval Air Station, Califormnia,

‘—--------.-.-IIIIIllIII-IIlII------.-.-..-.--.-.-i‘

i abs 1 2 e At i St AL T L

redesigned the IR. The result, currently being used in the
IFPDAS 11, is a more capable and reliable IR. Increased
capabilities are a result of the addition of environmental
and body temperature sensors., However, it should be noted
that some design tradeoffs were made to accomodate the
additional sensors. The result is that either body
temperature and ECG, or environmental parameters can be
recorded, exclusive of each other (Ref 8). Reliability is
increased 1n two ways, one being through the increased use of
IC's. Another 1is the result of digitizing some of the
recorded data, The sensors that are recorded digitally are
the body temperature and ECG. While this new IR 1is an
improvement over the old, all of the five problems listed
above still exist.

Previous Studies. Previous studies have shown that a

solid-state IR is feasible, using commercially available
hardware. The progression from the initial feasiblity
question through the most recent thesis effort is outlined in
the following chronology of US Air Force Institute of
Technology (AFIT) studies.

1. Jolda and Wanzek (DEC 77) ~ showed a solid-state
IR is feasible using Magnetic Bubble Memory

(MBM) ;

2. Hill (DEC 78) - investigated storage requirements
and techniques for sampling 12 physiological
sensors;

3. Moore (JUN 80) - simulated IR operation on a
Rockwell 6500 microcomputer with MBM, while
analyzing storage requirements; and

4, Svetz (DEC 80) - considered a hardware design for
the IR and wrote software for a ground based
system to analyze IFPDAS data.

While a one sentence synopsis of each of the above theses 1is
terse, it describes the most important aspect that each
contributes to the ongoing search for an improved IR. Based

on recommendations made by these studies, the next logical

step is to construct a prototype of a new IR.

Problem Statement

This thesis is aimed at replacing the weak link in the
IFPDAS by building an IR prototype. Unlike previous models,
the new IR will be a solid-state, microprocessor-controlled
device. This new design offers the following solutions to

the problems listed in the Current System description.

l. Moving parts, which stop during high-G maneuvers,
will be replaced by solid-state components.

2. Sampling limitations will be alleviated by two
means. One will be that any 0-5V sensor can be
plugged into any of the sensor ports. Another will
be use of a microprocessor to control sampling
methods through characteristically flexible
software.

3. All data will be stored and manipulated in its
digital form. Therefore, the only error in the
sample data will be a consequence of the analog-to-
digital (A/D) conversion. Once in digital form,
data manipulation will be free from error
introduced by anmalog noise.

4, System reliability will increace because IC's will
be used where possible. Use of discrete components
will be minimized.

5. While the IR prototype will not directly solve the
bulk problem, it will provide a model for
estimating the size of a new IR. Though the
new IR will be physically larger, its basic
structure a4s a microprocessor with peripheral I/0
ports (input - signal sensors; output - secondary

e

storage) allows the system to be broken down into
several smaller devices and distributed to
convenient body locations, If distribution 1is
judicious, pilot movement will be less restricted
with the new IR.

Scope and Assumptions

For this project, a prototype was considered to be a box
capable of overcoming the first four problems mentioned
above, as well as providing a model for estimating system
bulk., To realize a working prototype, IR hardware was
designed and built using commercially available IC's. In
addition, software was written to show that IR components
were functional.

Because of the limited time for completing this thesis,
custom design of the physiological sensors was not done.
Instead, the IR was designed to interface directly to any
sensor having a full scale output range of 0-5V. This 0-5V
assumption was natural since all IR sensors in the IFPDAS II
meet this criterion (Ref 8). In addition, the new IR
benefited from this assumption because its design was not
restricted by a closed set of sensors. Therefore, the new IR
can be tailored for a specific application simply by changing
the sensors and writing appropriate software drivers.

4 second assumption involving the sensors dealt with
data accuracy. The assumption was that eight bits of digital
data could accurately represent the sampled analog inputs.
IR sensor sampling and ground based signal reconstruction

were investigated by Jolda and Wanzek. Based on their

observations an eight bit word, capable of recording units

from 0 to 255, was sufficient for IFPDAS use (Ref 16:27-41).
Further analysis of sample accuracy was not done in this
thesis,

It must also be noted that IR comstructiion was not
restricted by requirements to interface the new IR to current
IFPDAS analysis hardware. This flexibility allowed for an
optimum hardware design based only on the requirements
outlined in Chapter II, This thesis assumed that appropriate
data processing equipment would be procured should current

equipment prove inadequate for supporting the new IR.

Approach

Building the IR prototype involved constructing hardware
and writing software. Before either hardware or software
work began, requirements were identified, an architecture was
developed, and IC's were chosen for the new IR, This process
matched a set of commercially available IC's to the major
components of the IR. Once devices were identified, hardware
design and construction began., As construction proceeded,
software was developed to show that each new system component

was properly interfaced.

Sequence of Presentation

Chapter 1I is a hardware requirements analysis whose
purpose it is to define a set of IC's for building the new
IR. Using the chips defined in Chapter II, Chapter III
describes the circuit design for constructing the new IR

prototype. Then Chapter IV outlines a program that

DU

demonstrates the operation of IR components. Finally,
Chapter V lists conclusions and makes recommendations for a
flyable IR, In addition, IR protoype support tools developed

during the project are described in the appendices.

A

II Hardware Requirements Analysis

The purpose of this functional analysis is to define a
microprocessor architecture that will satisfy the
requirements for a new generation IR. This analysis begins
by deriving a list of required and desired characteristics to
guide construction of the IR prototype. Then, a preliminary
hardware architecture for performing physiological data
acquisition is described. Finally, commercially available
IC's are mapped onto the preliminary architecture, defining

the set of solid-state components used in the new IR.

Required Characteristics

The characteristics required for the new IR were derived
from a set of requirements identified by Capt Hall and Lt
Shackford of SAM (Ref 8). Generally, requirements were
derived to soive the problems 1inherent in the IFPDAS II (see

Current System, Chapter I). 1In addition, prior theses showed

that it was feasible to construct a system with
characteristics based on the following requirements.

The first requirement is that the IR resist mechanical
failures. This requiremen- is a consequence of the fact that
the tape recorder portion of the current IR fails during
high-G aircraft maneuvers. This failure results from the
tape transport's mechanical nature. As forces on the

recorder become excessive, the tape transport stops. A

solution to this problem is to replace the mechanical
components with solid-state components.

The second requirement is that the IR be totally man
portable. To preclude interference with emergency pilot
egress, there can be no physical connections between the IR
and the cockpit environment. This interconnecting
restriction forces a remote operating capability on the IR,
Consequently, the IR must carry its own power supply,
resulting in a required characteristic for battery operation.

The third requirement is that the IR be unrestrictive.
That is, it must be small enough to be attached to crew
members without restricting movement. This requirement
results from comments made by pilots who have worn the IR of
the IFPDAS I. Their comments indicate that since the IR is
located on their chests, its two inch thickness hindered
movement. A concensus on the bulkiness of the IR of the
IFPDAS II, which is only an inch and a half thick, is not
available at the time of this writing. Regardless, the new
IR must not obstruct pilot movements.

When considered together, the previous two requirements
imply that the IR should be as small as possible. That is,
given that it must be totally man portable, a small IR is
less restrictive than a large IR. Requirements do not give a
set of me-surements to bound the IR; instead, the requirement
for an unrestrictive property is specified. So, while small

size is a by-product of portable and unrestrictive, it will

not be categorized as a required characteristic.

The final requirement is that the IR be flexible. This
is motivated by the fact that SAM wishes to record data other
than the limited set available from the current IR,
According to Capt. Hall, changing current sensor inputs and
sampling rates is tedious to the point that variations are
not made (Ref 8). A more flexible IR must possess two
characteristics. One 1s that it be microprocessor
controlled, so that sampling order and rate are easily
changed by software reprogramming. Another is that sensor
interfacing be simple and direct. For the purposes of this
thesis, sensor interfacing is simplified based on the Scope

and Assumptions discussion of Chapter I.

In summary, because of the requirements that the new IR
be failure resistant, man portable, unrestrictive , and

flexible; the IR must possess the following characteristics:

1. solid-state,

2. battery operated,

3. unobstructive, and

4, microprocessor controlled.

Desirable Characteristics

In addition to the required characteristics outlined
above, SAM listed several other features that should be
incorporated into the IR prototype. These desired
characteristics differ from those that are required, in that
they are only goals for guiding the prototype design.
Failure to meet all desired characteristics is not critical

to construction of the new IR.

10

TABLE I

Sensor Sampling Rates
(Refs 11:9-13; 21:15)

- . D - G - T = mm m e e S e Ae G e G w .

Sampling Rate

Sensor (samples per second)

sensor cluster
Triaxial Acceleration . . ., 8 24
Cabin Pressure . .« « « « o « o« « o = 2 2
Inspired Flow Rate + « « . . 20 20
Expired Flow Rate . . . « « « « +« « o+ 20 20
Inspired Oxygen Concentration 20 20
Expired Oxygen Concentratiom 20 20
Body Temperature . « « « o « s & & 2 16
Total . o o v ¢ ¢ o o o o o o o o o I;;

- P o - " - o - - - e e P G W D - . S M T e e R - A W e e =

Most of the desired characteristics involve sensor
inputs. First, the IR prototype should be capable of 16
sensor inputs. In addition, the initial set of sensors
should be: 1. triaxial acceleration (Gx, Gy, Gz),

2. <cabin pressure,

3. inspired flow rate,

4, expired flow rate,

5. 1inspired oxygen concentration,

6. expired oxygen concentration, and

7. body temperature (at eight points).

(Ref 8)

These sixteen sensors dictate a rate of 122 samples per
second, Individual rates are broken out in Table I, based on

derivations done in the Hill and Moore theses., Noting that

future applications call for the use of various other

11

sensors, another desirable characteristic is that IR
components be able to support expanding capabilities. The
sensors being considered include additional environmental and
several electrocardiogram sensors. Yet another desirable
characteristic is for an operating duration of four hours,
that being the length of a useful data acquistion mission
(Ref 8). In summary, there are four desirable
characteristics for the IR prototpe:

16 sensors,

room-for~expansion,

122 samples per second, and
four hour operation,

WA -
e ¢ e

Preliminary Architecture

Hardware architectures 1illustrated in this thesis rely
on the Processor-Memory-Switch (PMS) techmique developed by
Gordon Bell and Allen Newell, They developed the PMS
technique as a "compact and useful"” method for describing
digital computers. Basically, PMS diagrams show gross
hardware structure by illustrating the capacity of system
components, information paths between components, and
distribution of control between components. The level of
detail at which these PMS attributes are defined depends on
particular applications. A more in depth description of the
PMS technique is found in Bell and Newell's book - Computer

Structures: Readings and Examples (Ref 1:15-36,615-27).

Component designations used in PMS diagrams within this

thesis come from standard abbreviations applied by Bell and

P ¢ m=mmguee M p (ROM)

L—Mp(RAM)

po——M g

T(A/D Converter #l)e——=T(Sensor #1)
h[({; :
T(A/D Converter #16)=mT(Sensor #16)

T(Parallel Output)

Figure 1. A Preliminary IR PMS,

Newell. They are: Pc - Central processor, Mp - primary
memory, Ms - secondary memory, K -~ controller, T -
transducer, and S - switch.

Figure 1 is a PMS diagram showing a general overview of
the hardware configuration to be employed in the new IR. The
remainder of this requirements analysis is directed at
mapping available IC's onto the portioms of this

configuration that fall within the outlined box. The

13

A

remainder of this chapter analyzes the:

main processor - Pc,

secondary storage - Ms,

program memory - Mp(ROM),

data acquisition ports - T(A/D Converter), and
. buffer storage - Mp(RAM).

BN
.

Other portions of the diagram are not examined in the

following analysis, but can easily be built wusing

commercially available components.

IC Technology

Before proceeding with analysis of individual
components, an IC technology family must be chosen to
implement the design. A proper techmnology is critical in o
light of the wunobstructive and battery operated
characteristics required for the new IR. Since batteries
are bulky, space requirements are best minimized by reducing
system power requirements. Therefore, the primary criterion
for chosing a technology must be to minimize power
consumption. "

Currently, Complementary Metal-Oxide Semiconductor
(CMO0S) devices draw far less power than other technologies.
Table II illustrates this fact by comparing the power
dissipated by Transistor-Transistor Logic (TTL), Low-power
Shottky TTL (LSTTL), Low=-power TTL (LTTL), and CMOS

technologies. The reason CMOS consumes such low power is

that only a low level leakage current flows through CMOS

gates when they are in a steady state. Larger currents are

drawn only while gates are switching from one state to

14

"-lIl.--l.-llll-ll--lIl-lllIIIll-.I..l.l-lll-Ill.u-u----—-———-—-———-“

TABLE II

Comparison of Logic Families (%)
(Refs 3:1-3,1-5; 28:6-3 - 6-5)

- ——— D - B " . - S e G T G w G G S R e D S D e e e -

TTL LSTTL LTTL CMOS
Typical Power
Dissipation 10 mW 2 oW 1 oW .01 oW (static)
(per gate) 1 mW (1Mhz)

Propagation

Delay 9 ns 10 ns 33 ns 50 as (5V)
30 ns (10V)

Input Voltages

Low Level .8V .8V v 1.5 v (5V)
(max) 2.0 vV (10V)
High Level 2 v 2 v 2 v 3.5 V (5V)
(min) 8.0 Vv (10V)
Output Voltages
Low Level b v 5V A4V .5 VvV (5V)
(max) 1.0 v (10V)
High Level 2.4 V 2.7 V 2.4V 4.5 V (5V)
(min) 9.0 Vv (10V)
Noise Margin 4V 3V 3V 1.0 v (5V)
(guaranteed) 1.0 v (10V)

- an — ————— - - — . D 0 M A e e 4 D e - . AR - = TS S R . P WP W G W Gm = he e

(*) NAND gates used as standard for comparison.

another. Consequently, as the frequency of gate switching
increases so does power consumption. In practice, however,
only a few gates switch at any one time, leaving most gates
in a static state. Therefore, at any one time, most gates
draw only leakage current resulting in low overall power
consumption (Ref 18:585).

Besides its low power characteristic, CMOS displays
several other advantages that make it a preferred candidate

for the IR. One is that CMOS generates very little heat as a

15 j

consequence of 1its low power operation. This characteristic
allows the IR to operate within the life vest of a pilot
without bulky ventilation devices.

Another advantage of CMOS over other technologies 1is its
relative immunity to noise. This immunity is known as the
noise margin and is defined as the difference between the
guaranteed voltage limits of a driving gate and voltage
requirements of a driven gate for a particular logic scate
(Ref 27:40). Applying this definition to the figures of
Table II, CMOS tolerates 2.5 times the noise that TTL does.
The figures of Table I1 are guaranteed by the manufacturer to
be absolutely safe operating tolerances. But in practice,
both TTL and CMOS exhibit higher tolerances, Typically, TTL
tolerates 1.5 volts in its logic 1 state, and 1l.15 volts in
its 0 state (Ref 27:41). Because CMOS changes states at
close to half of its supply voltage, it typically tolerates
noise at levels up to 45 percent of the supply voltage (Refs
3:6-60; 29:94). With a five volt supply this equates to a
2.25 volt tolerance. So, because CMOS has a higher noise
margin than other technologies, the power supply of the IR
cau be simplified without affecting system operation.

So far, discussion has centered om a +5V power supply
for operating the different technologies. As Table II
indicates, CMOS can also be biased at higher voltages.
Advantages gained by operating CMOS at a higher voltage are

reduced propagation delay and increased noise margin. The

16

magnitude of these advantages is shown in Table II for CMOS
gates cperated at +10V,

In addition to the advantages offered by CMOS, there 1is
one important disadvantage that must be considered. The
disadvantage, as illustrated in Table II, is that current

CMOS devices are slower than devices of other technologies.

These slower speeds result more from monetary considerations
than from theoretical limits. But, as CMOS manufacturing
costs decrease relative to more popular technologies, more
CMOS devices with improved performance will become
commercially available (Refs 6:24; 26:90,94). One recent
example of an improved performance CMOS technology 1is
National Semiconductor's poly-planar CMOS (P2CMOS) process
(Ref 24:3-1). A NAND gate fabricated with P2CMO0S techniques
has a propagation delay of only 18 nanoseconds when operated
from a five volt supply (Ref 24:A-55). But, even though CMOS
technologies are capable of better speed performance, most
CMOS chips available today are comparatively slow,
Consideration of CMOS device speeds is important to the
IR for two reasons. One is that the main processor of the IR
must be fast esugh to sample and store data at an acceptable
rate. Analysis, completed later in this chapter (see Main
Processor subsection), shows that such a processor does
exist. Another reason involves the circuits which connect
the compouents within the processor. These "glue" circuits
must keep up with the processor so that control signals are

not lost. Since a wide variety of fast CMOS devices do not

17

r—-"———-——-——-———-—————r

exist, interconnecting IC's hold potential problems for the
IR design. Fortunately, these problems can be reduced by
using either of the more popular LTTL or LSTTL technologies.
Which technology to use depends on speed requirements, with

LTTL beirg preferred because of its lower power consumption.

Evaluation

The following analysis yields a set of IC's for use as
the major circuit components in the new IR. Though
components have been analyzed in prior theses, there are two
reasons why they must be reevaluated. Most importantly, many
new chips have been marketed in the past year. Several of
them are directly applicable to the IR. Another reason for
reevaluation is that previous analyses were biased by
availability of and familiarity with the davelopment tools
located in the AFIT Digital Engineering Lab. These biases
forced unnecessary restrictions on previous analyses. The
only restrictions placed on the following analysis are the
required and desired characteristics outlined above. This
new evaluation yields a chip set which is better suited for
the new IR than those suggested in prior theses.

Main Processor. The central component of the new IR is
a CMOS genmeral-purpose microprocessor. The following
discussion analyzes three microprocessors: the National
Semiconductor NSC800, the Motorola MC146805E2, and the RCA
CDP1802. They were chosen because they are the only 8~bit
CMOS general-purpose microprocessors on the market today

(Refs 20:150-4,162-5; 13:501-45). Each is a solid-state, 40

18

pin IC, capable of battery operation, These features satisfy
f all required characteristics, qualifying them for use in the
new IR.

Before analyzing desirable characterisics, it should be
noted that benchmarking would have been a useful tool for
comparing the microprocessors. Programming identical IR
data manipulation algorithms, would have provided valuable
information for choosing the best applicable microprocessor.

However, with the time allotted to order hardware and

complete this thesis, such a comparison was not feasible.
Still, one microprocessor was judged best for IR
applications.

Continuing the evaluation, only two of the desirable
characteristics, 122 samples per second and room-for-
expansion, apply to the microprocessors. Considering the
desire to process 122 samples per second, Table III indicates
that even the slowest processor can execute 1279 instructions
per sample. While no wminimum number of instructions per
sample has been projected, 1279 certainly allows for reading
and storing a byte of data with some level of processing in
between. It follows that, if the slowest processor 1is
capable of processing 122 samples per second, then all of the
processors in Table III are acceptable.

Expansion capabilities of the new IR depend upon both
instruction cycle time and available address space. Possible
areas of expansion include sampling at higher data rates and

increasing the complexity of preprocessing algorithms. Both

19

T

TABLE III

Comparison of Microprocessors
(Refs 22:2,3,22-23;
24:4-2,4~7 - 4-9,;
26:17,19,24,31)

- - ————— D - - — - S WS Y e = . > S . o - -

NSC800 MC6805 RCA1802
Operating Frequency
(max at 5V) 5M 5M 2,54
Clock Cycles per
Machine Cycle 2 5 8
Machine Cycle Frequency
(max at 5V) 2.5M 1M J31M
Cycles per Instr .
(fastest instr) 4 2 2
Instr Cycle Frequency
(KIPS) 625 500 156
Instr per 1/122 sec 5120 4100 1279
Address Range 64K 8K 64K

. - - - —— o ——— - — D - T - e Am e -

areas are limited by the speed of the host microprocessor.
In addition, increased algorithm complexity generally implies
the need for additional program storage. Comparing the
processor speed and address space characteristics outlined in
Table ITII, the NSC800 is the best performer. The MC6805 is
chosen as the second best since its execution speed is faster

than the RCA1802 and its address space can be expanded to

equal that of the RCA1802 through memory banking.
Memory banking techniques allow software to activate

blocks of memory one at a time. The largest block size

20

available to the MC6805 is 8K bytes. Implementing eight 8K
banks, the MC6805 has access to 64K bytes of memory, equaling
that ot the RCA1802. A summary of expansion capability
rankings is provided later in Table 1IV.

Prior to examining the room-for-expansion criterion, all
three microprocessors were judged capable of supporting IR
requirements, To this point there has been no compelling
reason to choose one microprocessor over the others.
Therefore, an additional set of criteria is introduced to aid
in rhe selection process.

The following paragraphs introduce three additional
criteria for selecting a microprocessor. First, the data
manipulation capabilities of each miscroprocessor are
compared, Next, processor support, including documentation
and variety of support chips, 1s evaluated. Then,
the popularity of the microprocessors 1is discussed relative
to software maintenance problems,

Besides sampling and preprocessing physiological data, a
primary function of the IR is to block and save the data in
secondary storage. While each of the microprocessors has
adequate single byte I/0 and arithmetic instructions, only
the NSC800 has block manipulating instructions. The
advantage of block moves is that a single instruction causes
transfer of an entire data block. In addition, a single
transfer i1nstruction executes somewhat faster than a loop

when moving the same amount of data. Consider, for example,

21

the following loop for outputting a block of data:

LOOP: LD A, (HL) 7 **
OUT (PORT),A 11 ** Instruction Time
INC HL 6 **% In Machine Cycles
DJNZ LoOOP 13 **

-—

37 - Total Machine Cycles
Using the block output instruction, OTIR, the above loop can
be executed in one instruction, requiring only 21 machine
cycles per byte, Other block manipulating instructiomns have
similar advantages. (Ref 24:5-5 - 5-32)

The I/0 subset of the block move instructious have
immediate applications imn the IR, Since the primary function
of the IR is real time data acquisition, the less time spent
saving data, the more time 1is available for processing

samples. Consequently, the block move instructions of the

NSC800 make it the most capable data handler for IR
applications.

Another important factor, especially during system
design, is manufacturer support. This support is critical in
two areas, processor documentation and variety of support
chips. All three manufacturers have good descriptions of
their microprocessors in both manuals and data sheets (Refs
22; 24; 26). However, each manufacturer's family of support
chips varies. RCA offers the widest variety, due probably to
the fact that their microprocessor has been commercially
available considerably longer than the others. The second
best variety comes from National Semiconductor, who has
adequate variety for simple applications, including remote

data acquisition (Refs 24:8-13, 8-15 - 8-17).

22

One way to reduce software maintenance problems is to
choose a popular microprocessor. This is true for two
reasons. One is that popular processors have a wider variety
of software development tools. This wider variety increases
the probability that one will be acceptable for IR
applications., Another reason is that increased popularity
implies that more people are qualified to program the
microprocessor. Consequently, the search for, or the
training of, programmers is simplified.

An indicator of microprocessor popularity is the number
of commercially available microcomputers which employ them.
Electronic Design publishes an annual guide for single board
microcomputer comparisons. Counting the numbers of CPU
boards based on the three processors in this analysis, the
MC6805 did not appear, the NSC800 was the basis for one
board, and the RCA1802 was the basis for three. However,
since microprocessor popularity is being judged as it relates
to software, and since the NSC800 executes the Z80
instruction set (Ref 24:A-3), all references to the Z80 can
be applied to the NSC800 count. The 280 is used in 36
products (Ref 19:88-95).

Before saying that the NSC800 has the most popular
software instruction set and the MC6805 has the least
popular, one other factor must be considered, Many
microprocessors have instruction sets that are extensions of
ancestors within the microprocessor family tree. Therefore,

upgrading to a related processor is a simple task when

23

TABLE 1V

Microprocessor Criteria Ratings (*)

- — - T T - Y A A - — G - S - . = — - —

- — - . " S - T — S S e S D D W G e e T A S v A e e S S . -

Required/Desired

Characteristics 1 1 1
Expansion Capability 1 2 3
Data Manipualtion 1 2 2
Support Chips 2 3 1
Popularity 1 2 3

—— - — - o — . — - WS N . T e W SR R — - —— — A - .

compared to learning a new language. Ancestors of the
NSC800/Z280 include the 8080 and the 8085. Those for the
MC6805 are the 6800 series processors and the 6502, The
RCA1802 has no popular ancestor (Refs 5:44-52; 30:175-84),
Referring to ancestors in the microcomputer guide, the NSC800
has the most popular software structure, followed by the
MC6805, with the RCA1802 being a distant third (Ref 19:88~

95).
Table IV summarizes the microprocessor comparisons made

in the previous discussion, For each criterion the
processors are ranked, with 1 being the best rating. The 1
rankings for the required/desired characteristics indicate
only that all microprocessors fulfilled the criteria,.
Expansion capability is ranmked separately because it was the

only desired criterion where one processor was judged more

capable than the others. The remaining criteria in the table

are those added to the selection process.

In conclusion, the NSC800 is chosen as the main
processor for the new IR. Referring to Table IV, the NSC800
has the best performance characteristics for all but one of
the evaluation criteria. Neither of the other two processors
performs as well as the NSC800, based on the criteria
developed above.

Secondary Storage. The need for a large secondary
memory, on the order of one megabyte, was projected by the
Hill and Moore theses. A one megabyte memory is the single
largest component in the IR. Therefore, it is potentially
the biggest power user and space consumer in the system.

Three possible solid-state memories that are available
for mass storage are MBM, RAM, and Charge Coupled Devices
(CCD). The densest possible examples of each are compared in

the following analysis. According to the 1981 IC Master

catalog, the densest commercially available devices are the
Intel 7110 MBM, the Fairchild F264 CCD, and the Harris HM6564
Static RAM.

Table V shows some charactistics of the three devices
that are targetted for use as secondary storage. The number
of chips indicates only what 1is required to store one
megabyte of data, The number does not include chips required
for processor interfacing. Since both the CCD's and RAM's
are 64 kilobit devices, they require 128 chips to store one

megabyte (Refs 7:1; 10:3-94). The bubble memory and its five

TABLE V

Comparison of Secondary Storage Devices

- - — - > S " S e S W T N = S T = e M A W e AR e AR e W e AR - e A ——

MBM CCD RAM

Chips 48 128 128
Area (sq in) 48 46 26>
Device Active
Time (perceut) .13 .06 .06
Power

Standby 8.36W 8.32W .03W

Operating 11.27W 8.35W .06W
Non-volatile yes no no

. - ————— - ——— T - — - - WS = - - ———— " - - = S - - . ———

support IC's can store one megabit, To store one megabyte,
an MBM device requires 6 * 8 = 48 chips (Ref 2:1-1).

The area consumed by each one megabyte store 1is
estimated by adding the areas taken up by each chip,.
Included in the estimate is two-tenths of an inch space
between each chip. To simplify calculations, this space is
divided among he IC's by including a one-tenth of an inch
border around each chip. The following calculations derive
the area values of Table V:

CCD chip size - .3 x .8

Single chip area

with .1 border - .4 < ,9 = .36
Total area required - .36 * 128 = 46.08 (Ref 7:8)

RAM chip size - .9 x 2.0
Single chip area

with .1 border - 1
Total area required - 2.

.0 * 2,
1 *» 12

.1
68.8 (Ref 10:8-9)

gl

1
8

MBM chip sizes - 725X - .3 x .7
7242 - .3 x 1.0
7230 - .6 x 1.2
7110 - 1.7 x 2.0
Single chip areas
with .1 border - 4 8 = 32
4 % 1.1 = 44
7 % 1.3 = .91
1.8 * 2,1 = 3,78

Total area required -

8 * ((3 * ,32) + .44 + ,91 + 3.78) = 48,3

All three devices chosen for secondary memory have
standby power ratings. Standby power indicates the amount of
power drawn by an IC which is not actively operating.,
Typically this power is less than that dissipated when the
chip is being accessed. So, the amount of time that an IC 1is
operating has a direct affect on the total power dissipated
by that IC.

The device active time within Table V indicates the
percentage of time that a memory device will be operating
during a data acquisition mission. Three assumptions were
made to obtain these percentages. First, the need to store
data at a four kilobytes per minute rate was established.
This rate uses 960K bytes, or 94 percent of the one megabyte
total, during a four hour mission. A second assumption was
that only one unit within a secondary device operates at one
time., That is, at any time only one IC will be operating
within the RAM and CCD devices, and only one module (six
IC's) will operate in the MBM device. The last assumption
was that secondary memory operates at its maximum rated

speed, consistent with low power consumption. Note, however,

that this maximum speed must be tempered by the speed of the
main processor,

A useable upper limit on secondary memory speed is the
maximum output transfer rate of the main processor. The
fastest way to output a data block through the NSC800 is with
the OTIR instruction. With a 2,5 MHz clock frequency, the
OTIR instruction takes 8.4 microseconds to transfer one byte
(Ref 24:5-27), This speed translates to a maximum output
transfer rr:e of 120,000, or approximately 117K bytes per
second.

Two of the three secondary storage devices operate
faster than 120 KHz. The fastest device is RAM, which can be
interfaced directly to the main processor without wait states
(Refs 10:3-100; 24:4-16). The second fastest device is CCD.
It consumes minimum power when operated at its minimum
frequency of one megahertz (Ref 7:6). Noting that CCD's are
serial devices, an operating frequency of one megahertz
translates to a transfer rate of 1,000,000 / 8 = 125,000, or
approximately 122K, bytes per second. With a speed matching
buffer between the NSC800 and CCD, the CCD peripheral
operates at the 120 KHz maximum of the NSC800. The NSC800

does not affect the MBM transfer speed. The BPK-72 Bubble

Memory Prototype Kit User's Manual sets the maximum MBM rate

at 50K bytes per second inm its minimum power consuming
configuration (Ref 2:2-7), 1In summary, the data transfer
rates used for Table V calculations are: RAM - 117K, CCD -

117K, and MBM - 50K bytes per second.

28

Calculations for device active times are based on the
transfer rates listed above. The method for determining
active time percentages is to divide the 4K bytes per minute
storage requirement by the transfer rate of each device. In
general, device active time = & / (rate * 60) * 100, when
expressed as a percentage. Substituting the storage rate
defined in the preceeding paragraph yields the values 1in
Table V.

The next to the last set of entries in Table V are power
ratings. They were obtained by adding up the power consumed
by each IC within a storage device. Individual power ratings
were taken from "typical’” values reported by the maufacturer.
Differences in reporting IC characteristics led to the
employment of three different methods for determining the
power ratings. Intel explicitly listed typical power
consumption figures for each device inmn the MBM module.
Fairchild provided a graph showing typical power dependence
on the operating clock pulse width, Finally, Harris listed
typical current and voltage characteristics to which the
power formula, voltage times current, was applied,

The standby power values of Table V are calculated with
all IC's in an inactive state., Calculations yield

RAM = 128 * ,25mW = 32mW = ,032W (Ref 10:3-97),

CCD = 128 * 65mW = 8.32W (Ref 7:6), and

MBM = 8 * .29W = 2.32W
+ 8 * ,225W = 1.80W
+ 8 * ,5W = 4,00W
+ 8 * ,03W = ,24W
+ 16 * 0.0W = 0.00W
= 8.36W (Ref 2:2-8).

29

s

Operating power values depend on the conditions set
above for transfer rates and numbers of parallel operating
IC's, For RAM storage only one IC operates. Since RAM
operates at the 120 KHz transfer rate of the NSC800, the
HM6564 has a typical current drain of 120KHz * (40mA / 1MHz),
or 4.8mA. At five volts, 4.8mA translates to a power draw of
24 mW, so,

RAM = (127 * .25mW) + 24mW = ,056W (Ref 10:3-97).
Operating at one megahertz an F265 draws 90mW, leading to

CCD = (127 * 65mW) + 90mW = 8.345W (Ref 7:6).
Finally, multiplexing MBM modules one at a time results in

six active IC's, and a power draw of

MBM = (7 * ,29W) + 1.48W = 3,51W
+ (7 * ,225W) + .225W = 1.97W
+ (7 * _5W) + .5 = 4,00W
+ (7 * ,03W) + .48 = .69W
+ (14 * 0W) + (2 * ,55W) = 1.10W
= 11.27W

(Ref 2:2-8).

At this point an observation relative to power ratings
is useful. The observation is that secondary storage is not
used frequently enough for the active power ratings to be a
useful comparison parameter, The largest and longest
operating power consumer, MBM, illustrates this point. The
MBM operates at 8.36W, 99.87 percent of the time, and at
11.27W the rest of the time. So, overall, the MBM dissipates

(99.87 * 8.36W) + (0.13 * 11,27W) = 8.364W.

This calculation shows that active power contributes on the
order of only a few milli-watts to overall power consumption.

Likewise, the other active power ratings of Table V do not

30

r——'——'—_——"——_‘—‘—‘ N

significantly affect overall power <consumption.
Consequently, the active power values of Table V are ignored
in the following analysis.

CCD, MBM, and RAM were chosen for analysis as secondary
storage devices because they satisfied both solid-state and
microprocessor controlled requirements. In addition, all
three can be operated on batteries. The lithium battery pack
proposed by Hill (Ref 11:84) is capable of powering both the

MBM and RAM devices. With a slight modification to include a

~5V supply the Hill pack could also power the CCD's.

Comparing the three storage devices relative to the
unobstructive requirement, forces RAM's to be dropped from
further consideration. As seen in Table V, RAM's consume 5.6
times the area of either MBM's or CCD's, Allowing for
reduced power requirements and using Hill's proposed power
pack, the area factor 1is still RAM = 4.4 * MBM. This 1is
deduced from the extreme assumption that the 3 x 2 x S inch
power pack can be eliminated to allow space for four 3 x 5
inch RAM boards. Since a RAM storage device would increase
the size of the IR much more than the other devices, it will
not be used as secondary IR memory.

The nnly significant difference between the MBM and CCD
devices as they relate to IR applications is their
volatility., This difference is important when considered
with the battery operated requirement and the power
consumption characteristics of the devices. To minimize

battery requirements a maximum operating time must be

31

—

designed into the IR, This time must be longer for the
volatile CCD's, since the IR must stay powered up until the
collected data can be dumped to a more permanent device. On
the other hand, MBM storage saves the data even after power
is removed, Consequently, the IR power supply can be

designed to operate only during the data acquisition task.,

Because of its non-volatile nature, MBM 1is chosen over the
CCD as IR secondary memory.

In conclusion, the MBM system is chosen as secondary
storage for the new IR, RAM is eliminated because it is much
bulkier than MBM. CCD is not used because it is volatile and :
requires a power source even after a data acquisition task is
complete.

Program Memory. From the beginning of the requirements
definition it has been assumed that program memory should be
non-volatile. Basically, there are two reasons for having a
non~volatile program memory. One is system flexibility.
This offers the advantages of being able to program the IR
long before a mission and to use the same program for several
missions without reprogramming after battery changes.
Another reason 1is that nom-volitility 1increases IR
reliability. Volatile memories are susceptible to change
during a mission, destroying program execution. In addition,
a non-volatile set of chips need only be programmed once for
a particularly popular mission and they can be used for years
without reprogramming. Every time a memory is reprogrammed,

there is potential for introduction of errors. So, given

32

N

P

that program memory will be nonm-volatile, the types to be

considered in this analysis are: ROM, PROM, EPROM, and
EEPROM.

ROM and PROM are not suitable for IR program storage.
They are rejected because they can be programmed only once
and changes can not be made. This permanence feature 1is
undesirable since the capability for program changes 1is
inherent in the room-for-expansion criterion. Since non-
volatile memories exist that can be reprogrammed, there is no
need for further consideration of ROM's and PROM's,

Two common types of non~volatile, reprogrammable 1
memories are EPROM and EEPROM, Basically they differ in the
way they are erased. EPROM's generally require UV light,
while EEPROM's are erased electrically. Both types come in
CMO0S, with 1K byte EEPROM's having the largest currently
available capacity; although, industry rumors are that
National Semiconductor will soon market the 27Cl6é, a 2K byte
EPROM (Ref 29:96).

Due mainly to the larger capacity of the EEPROM, it will
be used in the new IR. The EEPROM of choice is the Hughes
Aircraft HNVM3008, since it is the only 1K byte EEPROM that

is commercially available.

33

Data Acquisition Ports. An analog interface to the

physiological sensors was previously analyzed in the Moore
thesis. Based on four requirements:

1. 12 channel input, minimum,

2. 144 conversions per second, minimum,

3. conversion error of less than 1 percent, and

4, low power consumption,

Moore chose the National Semiconductor ADCO817CC, a 16
channel monolithic A/D converter (Ref 21:10).

Since Moore's thesis was published, user requirements
have changed slightly. New requirements are for 16 input
channels and a 122 samples per second conversion rate. Both
of these desired characteristics are supported by the
ADC0817. So, for the reasoms initially chosen by Moore, and
as tempered by new requirements, the ADC0817 is used for the

analog data acquisition ports of the new IR.

Buffer Memory. Buffer memory is used primarily as an

area where physiological data is collected and preprocessed
before being transferred to secondary memory. This activity
implies the need for a read/write memory, or RAM., 1In the
following analysis, the three IR characteristics of - battery
operated, unobtrusive size, and 16 sensors =~ drive RAM
selection,

As derived earlier, the battery operated and
unobstructive characteristics imply the need to minimize
power consumption. A table of RAM characteristics, provided
for Hitachi memories, indicates that CMOS static RAM's have
low power consumption relative to other types of RAM (Ref

14:4), Even dynamic RAM, which characteristically draws less

34

r————-————-———wm

power than static RAM's (Ref 9:123), draws more power than
Hitachi's CMOS RAM, Using RAM from another manufacturer for
comparison verifies this relationship., As an example, the
Intel 2117 dynamic RAM consumes 462 mW when operating and 20
mW in standby (Ref 4:1-26). By comparison, the Hitachi
HM6116LP draws 300 mW operating and .5 mW standby (Ref
14:72). So, to minimize power consumption, buffer memory

should be CMOS static RAM.

The third characteristic, the need for 16 sensors,
provides a basis for estimating RAM size. Using projections
made by Moore, there should be enough RAM to store 25 blocks '
of data., This allows buffer space for one and a half times
the 16 data channels, leaving one block for program
scratchpad memory. The eight aaditional data blocks are used
to start new buffers once o0ld ones are full and awaiting
output to secondary storage (Ref 14:20-2).

The choice of MBM as secondary storage sets the buffer
block size to 64 bytes. In its minimum power consuming
configuration with error correction enabled, MBM transfers
data in 512 bit (64 byte) blocks (Ref 2:2-8,3-6)., Combined
with the need for 25 data blocks, buffer memory should be a
minimum of 25 * 64 = 1600 bytes, or effectively 2K bytes.

Several manufacturers offer 2K byte, CMOS, static RAM's.
Of them, Hitachi offers the most flexible line of chips (Ref
13:2813). That is, they offer a wide range of power drains
and access times (Ref 14:66-75). The lowest power consuming

model offered is the HM6116LP and is chosen for IR RAM,

35

P ¢ e Mp (EEPROM)

p—Mp (RAM) V
Ms (MBM #1)
-
Ms (MBM #8)

T(Sensor #1)
e T(A/D Converter)—K—E:
T(Sensor #16)

T(Parallel OQutput)

Pc (NSC800, 2.5MHz)

Mp (HNVM3008, 8K bytes)
Mp (HM6116LP, 2K bytes)
Ms (Intel 7110, 1M bit)
T (ADCO81l7cCC)

Figure 2, The Proposed New IR.

Conclusions

Component choices made in the above analyses contribute
to a more definitive IR architecture than that outlined in
Figure 1. Figure 2 is a PMS diagram showing the chip level

components for the new IR. Having defined components for the

new IR, the next step is to build a prototype to prove the

proposed design meets user requirements., The next chapter

e iem i Bae

describes the IC level hardware architecture of the new IR

prototype.

IITI Prototvpe Construction

The proposed new IR, diagrammed in Figure 2, is an
architecture for satisfying the required and desired i
characteristics outlined in Chapter II, The prototype IR
described in this chapter provides a tool for determining how
well the proposed architecture functions. Tests run with the
prototype provide information for tailoring the proposed IR
before final circuit boards are produced.

The IR prototype implements the architecture of Figure 2
with two minor but important changes. One is that RAM is 1

increased to 8K bytes. This allows space for investigating

effects of buffering data in blocks larger than 64 bytes,
the minimum required by the MBM. The other change 1is that
only one MBM module is implemented. The original purchase of
Intel Bubble Prototyping Kits (BPK-72) allows two separate
128K byte storage units to be built., To obtain a 256K byte
memory, either an Intel iSBC 254 board must be purchased, or
an interface must be designed to combine the BPK-72 boards.
Because of time constraints neither option was pursued.

The schematic diagrams wused for discussing the

components of the IR in this chapter are the same ones used

to build the IR prototype. While the diagrams are scattered
throughout this chapter, they are combined into one five page

figure in Appendix A.

38

Operating Voltage

The prototype IR requires +5V, +12V, and -12V for proper
operation, The +12V supply is required by both the MBM and
A/D Converter peripherals. The -12V supply is used only by
the A/D Converter peripherals (Refs 2:2-8; 10). Other paTts
of the system use +5V,

The main processor and its support IC's are fabricated
with P2CMOS technology. While P2CMOS chips operate over a
voltage range of +3V to +12V (Ref 24:4-6), they are biased at
+5V in the IR. There are three reasons for choosing a +5V
power supply. One is that at +5V the NSC800 operates at 2.5
MHz, as analyzed in Chapter II. Another reason for choosing
a +5V power supply is to keep power consumption low, since
power dissipated by a CMOS gate is directly proportional to
its operating voltage (Refs 3:6-5; 9:32-33; 18:585). The
third reason involves interfacing the various chips within
the IR. Both the Bubble Memory Controller (BMC) and the
EEPROM must operate at +5V (Refs 2:2-8; 12). While voltage
translation circuitry could be used between components of the
IR, interfacing is simplified and chip count is reduced 1if

all components operate at a single voltage,

IC Technology Mix

All IR circuitry, except for the MBM, is comstructed
with CMOS derivative IC'S., The MBM peripheral was built
using customized circuits provided by the manufacturer.

Intel provides a BMC for interfacing the MBM to various

TABLE VI

IC Family Voltage Characteristics
(Refs 24:A-4; 15:12; 3:1-185)

Voltage Type P2CMOS CMOS HMOS
Logical 0 Input (max) 1.5 1.5 .8
Logical 1 Input (min) 3.5 3.5 2.0
Logical 0 Output (max) A A A
Logical 1 Qutput (min) 4.5 4.6 2.4

CPU's. The technolgy used to fabricate the BMC is Intel's
High-performance M0S (HMOS). Connecting HMOS to CMOS is
straight forward but requires some precautions.

HMOS is a NMOS derivative technology (Ref 9:30). Its
direct current voltage characteristics are summarized in
Table VI along with characteristics for P2CMOS and CMOS. The
devices used to obtain the ratings in Table VI are the
NSC800, the ADCO0817, and the Intel 7220. As seen in Table
VI, the three technologies are directly compatable at the
logic 0 level. That is, the voltage level output by any one
technology is below the input threshold of the others.
However, potential problems arise at the logic 1 level.
While both CMOS technologies have output voltages above the
input threshold of HMOS, the opposite is not true. An HMOS
output of 2.4V is not guaranteed to be recognized as a high
input to either P2CMOS or CMOS. So, in cases where HMOS

provides input by either P2CMOS or CMOS, a pull up resistor

40

with a value in the neighborhood of 10K ohms should be
included in the circuit (Ref 3:6-8; 8:42). Pull up resistors

used in the IR are 10K ohms.

Y.

Boéfdl}ayout

' The IR prototype exists on a wirewrap card. Figure 3 is
a map that shows the major component parts of the IR as they
appear on the cafd. To aide in tracing system bugs, the

wiring used in the IR is color coded. The code used is:

Red ~ +5V,
Black - Ground,
Blue - Data Bus,
Yellow - Address (7 - 0) Bus
Orange - Address (15 - 8) Bus
Green - Control Bus
White - Other
EEPROM
CPU RAM
1/0 PORTS
BUS CONNECTOR

Figure 3. Major Component Map of IR Prototype.

Bus Structure

The three system busses of the IR carry data, address,
and control information., These three busses intersect at the
CPU. To keep them operating at their full rated speed,

connection of devices to the busses must be scrutinized.

Since CMOS has a high input impedence, it draws only
leakage current while it is in a steady state. Consequently,
fan~out for CMOS to CMOS interfaces is typically 50 devices
(Ref 18:67-8). However, circuit capacitance puts a practical
limit on the number of devices that a CMOS gate can drive.
CMOS gate inputs add capacitive loads to circuits. As the
number of inputs increase, so does the time that it takes to
charge the additiomal capacitance. The result is increased
propagation delays between the output and input of gates (Ref
3:6-4 ~ 6-7,6=-17).

The drive capacity for the NSC800 family of chips 1is
rated at 100 pico-farads (Ref 24), Since input capacitance
specifications are not available for many of the IC's used in
the IR, each input is assumed to add a 15 pico-farad load to
the circuit (Ref 3:6-17). This assumption limits the fan-out
of CMOS gates used in the IR to six, leaving a small margin
for error. In all but one case, fan~-out 1is less than or
equal to six within the IR. The connection of eight EEPROM's
to system bus buffers violates the limit., However, that
portion of the IR works cousistently and is a logical block

to which no hardware additions are anticipated.

42

T ————

TABLE VII

IR Bus Connector Definition

- D - ——— T = T G D S - S G T = A =D M W W e e WS TR G S G S -

Pin Signal Pin Signal
Number Function Number Function
1 +5V 50 Open
2 GND 49 SO
3 +12V 48 CLK
4 Data 0 47 PowerSave¥
5 Data 1 46 Data 4
6 Data 2 45 Data 5
7 Data 3 44 Data 6
8 WR* 43 Data 7
9 Addr 0 42 kD*
10 Addr 1 41 Addr 4
11 Addr 2 40 Addr 5
12 Addr 3 39 Addr 6
13 XWAIT* 38 Addr 7
14 Addr 8 37 I0/M*
15 Addr 9 36 Addr 12
16 Addr 10 35 Addr 13
17 Addr 11 34 Addr 14
18 Resetln¥* 33 Addr 15
19 BREQ* 32 ResetOut
20 NMI* 31 BACK¥
21 RSTB* 30 RSTA*
22 INTIR* 29 RSTC*
23 INTA* 28 Open
24 Sl 27 GND
25 -12V 26 +5V

- " — - —— = = G - S W - - e - o - . - ——

A 50 pin connector is provided with the IR prototype so
that external devices can easily be added. Table VII defines
the pin-out for the connector., Restricting the bus to 50
pins resulted from the availability of connectors during late
phases of the project. While more control lines could be

defined for a more general bus, the 50 pin bus is sufficient

43

for most applications, including the Recorder Debugging Tool
(see Appendix D) interface.

The reason for providing a connection to the IR bus
structure is so that development and debugging circuits can
easily be added. When adding such circuits, a designer must
be aware that the connector is not buffered and every gate
interfaced through the connector loads the CPU. Therefore,
it is recommended that, at a minimum, every pin used as an
input by an external device be buffered by a CMOS gate. This
presents only a single CMOS load to the CPU. Because of the
conservative loading design of the IR, adding single CMOS

loads should not effect IR operation.

CPU

The CPU for the IR prototype consists of the NSC800 and
its clock, reset, wait state, and bus demultiplexing
circuitry. Figure 4 1is a schematic showing how these
circuits are integrated to form the CPU, This schematic is
referenced throughout the discussion of CPU components.

System Clock. Operating at +5V, the microprocessor used

in the prototype has a maximum rated speed of 2.5 MHz. This
operating frequency is controlled by an extermal timing
circuit which must be twice as fast. The NSC800 contains an
on~chip oscillator which divides the external timing signals
to produce a square wave clock signal., This clock is the
basis for machine cycle timing within the NSC800. The
circuit used to produce the 5MHz extermal clock is one

suggested in the NSC800 Microprocessor Family Handbook. It

44

»fh -5
> GND
CNTR CNTRL
1000 'é > y <
onTa /& o 20 AOOR
8 —\r;‘m
1 1Te
Tt e]
r Fos o A3
N RS ,Zf’zf g
LA
20 .Y = o 245
7 Aug,
!
L GNO '
* 4
< rou { !
47X - .) L _/
AN Lol f» N GND 8 3)
Nedemyd 7377 so7 2l 4 o
N £ 11 1 20 =TT T
\ HE N IIT;JI
N INTR s L2, - i
N 7 | X%
L%’r;y % Ld A [i |
P S0 0 A0 3 LRl
IALE 0 XiN) =
:: ¥g XouTH=
L -33}] gl- p SMNa
\ prz] i %
BACK . »
a3, | A
: 1 A
waIT A
Ps i A
e Ad - ~
Nt
arx
AL
]
e
2 NE C* anok
~da
e 7 ald
derx 4 om
o Jcuef
Liéa
M

Figure 4., CPU

45

consists of a 5 MHz crystal, a one mega-ohm resistor and two
4.7 pico~-farad capacitors (Ref 24:4-8 - 4-9, A-10).

System Reset. Another circuit mentioned in the NSC800

Handbook is one to provide orderly power~up for the system.
Since the NSC800 has an on-chip Schmitt trigger, the
manufacturer claims that a simple Resistor-Capacitor network,
connected to RESET-IN¥*, provides a proper power-up reset
function. Following manufacturer directions, repeated
experimentation with various combinations of resistors and
capacitors could not produce a clean power-up sequence.

As the IR powered up, the NSC800 reset many times.
These multiple resets were observed by monitoring portions of
the data, address, and control busses with a logic analyzer.
Two phenomena indicated that the NSC800 had an unstable
period while it was resetting. One was that RESET-OUT
toggled randomly as system power approached +5V. The other
was that instruction execution began at location 00COH each
time RESET-0OUT went low, with various numbers of machine
cycles being completed before RESET-OUT returned high. Once
RESET~-0UT stabalized at 0V, the processor operated
predictably.

To correct the reset problem a Schmitt trigger was added
to the reset circuit between the Resistor-Capacitor network
and the RESET-IN* pin of the NSC800. The Schmitt trigger
circuit consists of two inverters and a feedback network.

The circuit used in the IR was adapted from one described in

46

-

Douglas Hall's book (Ref 9:35-6). After the external Schmitt
trigger was added, the NSC800 reset properly.

‘ Wait State Generator., Aunother component of the CPU is
the wait state generator. Wait states must be added to

memory read cycles whenever program memory is accessed.

Accesss time for the HNVM 3008's is slow enough to require
one extra machine cycle for transferring data to the NSC800.
In addition to generating wait states for EEPROM accesses,
the wait state generator must also insure that machine cycles
are not added when other memory, or any peripheral, 1is
addressed. The last function supported by the wait state
generator is to gate wait state requests from external
devices, such as the Recorder Debugging Tool, to the NSCS8CO.

An inverter, a pull-up resistor, and the two data flip-
flops (FF) of IC number C4 form the wait state generator.
Basically their fumction is to hold the WAIT* pin of the
NSC800 high until a wait state is required. Two conditionmns
are sufficient requirements for generating wait states. One
is when the XWAIT* pin of the IR bus is pulled low by an
external device., When this happens, the FF controlling WAIT¥
is cleared and multiple wait states are generated until
XWAIT* returns high., The other condition for generating wait
states is when a EEPROM address is accessed., During these
times only one wait state is necessary, To add one wait
state, the WAIT* pin of the NSC800 must be pulled low for one
machine cycle following the latching (ALE = 1) of a EEPROM

address.

47

3
N
-
»

Io/M % iy, Q 5] Q WAIT #

e —

»
0
L

»

&

ek XWa 1T 2

Figure 5. Wait State Generator

Generation of a single wait state is explained using
Figure 5, a more explicit drawing than that of Figure 4. The
wait state generator works by passing the current value at
the "D" input of the left FF to the "Q" output of the right
one, Conseqently, when a peripheral is addressed, WAIT* =
I0/M* = 1 and no wait states are generated, When memory is
addressed, a zero passes from the left to the right FF. But,
if the memory access is to RAM, the right FF is preset by
RAM* before WAIT* = Q0 is recognized by the NSC800; aand again
no wait states are generated, If EEPROM is addressed, RAM* =
1, WAIT* = 0, and the NSC800 adds an extra machine cycle to
its memory access operation.

To keep from adding more than one wait state, WAIT* has
one clock cycle in which to reset. This cycle is between the

falling edges of the system clock one cycle before the added

48

wait state and during the wait state (Ref 24:8-8). To
complete this reset within the allotted time, the left FF is
immediately preset whenever WAIT* becomes zero, The
resulting high later passes to the right FF an the rising
edge of the next NSC800 clock pulse. Under this scemnario
WAIT* is held low long enough to add only one machine cycle
to EEPROM access operations,

Bus Demultiplexer. The low order byte of the address

bus is multiplexed with the data bus in the NSC800. The two
are separated by a widely used circuit employing an 82PCl2,
eight bit I/0 Port (Refs 4:6-56; 24:8-4 -~ 8-6). During the
first machine cycle of a memory or peripheral access, an
address appears on the multiplexed bus. Before the cycle
completes, an ALE pulse causes the address to latch into the
82PCl2. Following this latching sequence, the multiplexed
bus is dedicated to use as the data bus.

One other function performed by the 82PCl2 is to place
the low order portion of the address bus in a tri-state mode
whenever BACK* = 0. This feature is intended for systems
which employ direct memory accessing. While the IR
prototype does not currently employ direct memory accessing
internally, the capability is used by an external device -
the Recorder Debugging Tool. Connecting BACK* to the 82PCl2
is transparent to normal IR operation and could be removed.,

But, the connection is important for debugging purposes, so

it remaias,

pet eng
Moiogu CNTRL,
oox Sook
QAT
AT, -~
J, L L. . ml 2" L—\
4 L = 3 A9 bpp——]
r g !
/ a
g .'.. ,’,’3 1
r 00 N
at z
r UQE_JNH
N~ 150 710 Veg | — T <
= 8 AODITIONAL
E 3 l — uM:M 1008°s 74—
\ 8 (4 ‘ :__\:
AT Y
/) 73 48 X
N ' v ; o ™ J
0 p e
\ | R: K 7! s Bl
N— Q = AQ o7
N A] X J : ’8?
bt Biss A'7 s LdDa — A
=
- 1 0 03
-
—d
r —
L 70
R 4:i5“ 2 -
T o]
] > < e -1
) - apxs 4
N 5 [?VI) —ld 4 - —
o | ox A 3 .
o@'
N :
Ny P2 &=
g 7 —”
o fom g | X =]
) 4 e !
Hna o2 2 ¢ g
rﬂ 3
\—n.———-_ 3
uz
_,,._S@OL_
[}
222 il Lo]
Llezs
Tam

Figure 6. EEPROM.

50

Primary Memory

Primary memory is split between EEPROM and RAM. The 8K
EEPROM space is used as program storage and occupies the
address space from 000Q00OH to lFFFH. RAM is provided for use
as buffer storage between the A/D converter and the MBM
peripheral. It occupies addresses 2000H through 3FFFH.

The two types of primary memory are physically separate
components within the IR prototype. With the exception of
one RD* line, signals from each component are interfaced to
the CPU through their own set of buffers., The RD* line is
shared between EEPROM and RAM only to reduce fan-out of the
line from the CPU. EEPROM requires nine RD* connections,
With the fan-out limit of six, EEPROM needs two buffered RD¥
lines., Since EEPROM does not use all 12 of the available
loads, one 1s connected to RAM. This connection deletes the
requirement for RAM to load the CPU's heavily used RD* line.

In addition to their physical separation, EEPROM and RAM
are logically separated by their addresses. That is, address
bit 13 (A13) determines which primary memory component is
enabled. When Al3 is zero, EEPROM is accessed; and when it
is one, RAM is accessed. While Al3 determines which primary
memory component is emabled, the I0/M* and RFSH* control
signals determine when they are enabled. All three signals
are combined by the logic in the lower left cormer of Figure
6 to provide proper enable pulses. Basically, the logic will
output an active low memory enable signal whenever the CPU

wishes to access memory (I0/M* = 0) during times other than

refresh cycles (RFSH* = 1), The inverse of this memory
enable allows Al3 and its complement to pass through NAND
gates and choose the primary memory component to be accessed.

IR hardware does not contain logic to protect software
from attempts to address memory locations above 3FFFH. While
the NSC800 is capable of addressing 64K bytes of memory,
EEPROM and RAM occupy only the low order 16K bytes. So, any
IR memory location can be addressed using only 14 bits.
Address decoding logic ignores the remaining two address
bits, truncating Al4 and Al5 from addresses greater than
3FFFH. It is the software designer's responsibility to
insure that programs limit their accesses to the available
0000H to 3FFFH address space.

Program Memory. With the exception of the logic gates
described above and IC number R20, Figure 6 shows the EEPROM
component of the primary memory. P10, P11, and P12 are
buffers; P19 is an address decoder; and P30 through P37 are
EEPROM's,

P10 and Pll are only enabled when a EEPROM address is
accessed. Since one of the RD* control lines is shared with
RAM, P12 is enabled whenever either memory component 1is
accessed. Direction control on Pl1l and P12 is harcwired to
pass information from the CPU to memory. RD* supplies
direction control for the data bus buffer, P10, Even though
the current IR design does mnot support writing to the

EEPROM's, direction control for the data bus buffer can not

A9-8 ———4 A9-8 CE¥ b—=—— ALE
A7-0 CS p————— (Cs*)*
AD7-0 D7-0 QE* RD*

FIGURE 7. Conventional HNVM3008 Interface

be hardwired. Doing so causes bus contention problems with
the CPU.

Bus contention stems from the multiplexed nature of the
data bus. The EEPROM data bus buffer is enabled whenever
Al3 = 0, IO/M* = 0 and RFSH* = 1, These conditions are true
at the beginning of each instruction cycle which accesses
EEPROM. However, during the first part of the cycle the
multiplexed bus contains a valid address. Hardwiring the
direction control would cause interference during this
portion of an instruction cycle. So, EEPROM is only granted
control of the data bus while RD* is low.

HNVM3008's are used for storage in the EEPROM portion of
primary memory. The way they are interfaced to the CPU is
unconventional by manufacturer standards. The manufacturer's
pin-out descriptions of the HNVM3008 leads to the design

shown in Figure 7.

e A e

"I-"---'-'-'l--l-'----.Ill-Il.--.II..'.-llll-!!l.llnlul----

A more optimum design is used in the IR, A comparison
of Figures 6 and 7 show the differences between the two. One
difference is that the IR design does not use the HNVM3008's
on~chip address latch to demultiplex the address/data bus.
Instead, the separated data and address busses, provided by
the CPU, are used. This reduces the number of loads on the
address/data bus by one half, Consequently, the
demultiplexed address bus 1is used to replace one of the
address/data bus loads on the CPU. This trade off is
desirable since the fan-out from the CPU is greater for the
address/data bus th.1 for the demultiplexed address bus.

Another benefit of the customized imterface for the
HNVM3008's is that chip select (CS) pulses from the address
decoding logic do not have to be inverted. This reduces chip
count in the IR by at least one, and possibly two. Another,
although minor, benefit of the IR configuration is that one
less control signal is required. That is, the ALE signal 1is
not used by program memory.

Buffer Memory. The buffer memory component of primary

memory consists of the circuit diagrammed in Figure 8, along
with IC number R20 of Figure 6., In Figure 8, R13 through R15
provide full buffering of lines connected to the CPU., Memory
itself consists of four 2K byte static RAM's. Consequently,
four CS* signals and an 11 bit address are sufficient for
addressing any byte within buffer memory. The four CS*
signals are generated by a three-to-eight line decoder, since

smaller decoders are not available in P2CMOS. IR production

ST YV

- 4 slllilvj
L
.)
’ TS T
2 o ¥ NHMH
1 1] o
w,m_w.wzmmwnvu ms R
Taft e 1N Foly 9--9
" n o283 N e ————Q3HS =
. - - 3 <
| | o
TTTITTT \ L1 ;\L .
hid (LU y11)553) @ n
(hﬁ - 7 h —a% [
PR o
J MM 1o Lm _. | u«u A
]]~ FL «- ﬁan.mwwwu; T e
4 4 A
n.m mazaa T8 [wvow zwu ©NQD [
3 o e-—f3) T lexgedies
THAHT TANT THIE
_)
.))))))))
= L] L
— _ f

-5
340
300R
m
B —
e
- S—

designs may find it beneficial to change to a two~to-four

line decoder fabricated in another CMOS technology.

Peripheral Devices

IR peripheral devices are shown in the schematics of
Figure 9 and 10. Accessing of peripherals is done using I/0
mapped addressing. During I/O0 operations, the address of the
selected peripheral appears on both the low and high order
bytes of the address bus (Ref 24:A-9). This duplication of
the peripheral address allows use of the high order byte for
selecting specific I/0 ports, and minimizes loading of the
heavily used address/data bus.

With the exception of BBH, peripheral addresses are
broken down into a 3 bit channel address and a five bit port
address. The channel address is essentially an enccded chip
select for enabling one of the three chips that contain
addressable ports and registers. The NSC810 is the
p ripheral chip with the most addressable entities, requiring
five bits to access all of them. Hence, five bits are used
to address any port om a specified channel., I/0 address BBH
is internally reserved by the NSC800 as an interrupt control
register (Ref 24:A-17).

Bits al5, Al4, and Al3 carry the I/0 channel address.
U25 decodes these address bits into chip selects. The timers
and 1/0 ports are attached to channel 1 -~ A15,A14,A13 = 001.
Channel 2, 010, contains the A/D Converter and channel 4,
100, contains the MBM. These channel addresses are listed

along with their associated port addresses in Table VIII.

56

Table VIII

1/0 Port Mapping
(Refs 2:3-1 - 3-3;
3:1-189; 24:A-32)

- . . . - T D v - S M N e M S e e S e S A T S G e e G o= A S e = Gn e e =P - -

Binary Type

Address Port Function
0010 0000 R/W Port A
001C 0001 R/W Port B
0010 0010 R/W Port C
0010 0100 W Port A Data Direction Reg.
0010 0101 W Port B Data Direction Reg. |
0010 0110 W Port C Data Direction Reg. :
0010 0111 W Port A Mode Definition Reg. y
0010 1000 W Port A - Bit Clear i
0010 1001 W Port B - Bit Clear {
0010 1010 W Port C - Bit Clear .
0010 1100 W Port A - Bit Set i
0010 1101 W Port B - Bit Set ¢
0010 1110 W Port C - Bit Set ;
0011 0000 R/W Timer 0 (LSB) !
0011 0001 R/W Timer 0 (MSB)
0011 0010 R/W Timer 1 (LSB)
0011 0011 R/W Timer 1 (MSB) k
0011 0100 W Stop Timer 0 !
0011 0101 W Start Timer 0 j
0011 0110 W Stop Timer 1 '
0011 0111 W Start Timer 1 ‘
0011 1000 R/W Timer 0 Mode
0011 1001 R/W Timer 1 Mode
010X 0000 R A/D Converter Port O
010X . R .
0l10x . R A/D Converter Port .
010X . R .
010X 1111 R A/D Convertei “ort 15 1
100X XXXO R/W MBM Data Port

100X XXXl1 R MBM Status Register
100X XXX1 W MBM Command Register
1011 1011 W Interrupt Control Register

57

X's appear in the table where address bits are ignored for a
particular channel. A/D converter port assignments
correspond to the low order four bits of the peripheral
address and are compressed in the table. Note that port
100X XXX1 has two different definitions, depending on whether
data is being read or written.

Timers. The IR prototype uses both of the timers

contained on the NSC810. Timer 0 is wired for generation of
fixed interval interrupts, while Timer 1 provides a clock for
the A/D converter.

The CPU provides a clock input frequency of 2.5 MHz to
both timers. This input frequency exceeds the maximum for
proper timer operation, Therefore, clock inputs must be
prescaled. The NSC810 allows for independent scaling of
clock inputs to both counters. Scaling factors for Timer 0
are 1, 2, and 64. Those for Timer ! are l and 2. Since
maximum timer input frequemcy is 2 MHz, a scaling factor of
at least two allows for proper operation of the timers (Ref
24:A~27,A-36). Chapter IV describes how software controls
operation of the timers,

OQutput from Timer 0 is connected to the RSTA* interrupt
pin of the CPU., To provide interrupts that meet hardware
design objectives (see Interrupt Structure), Timer 0 must be
programmed as an accumulative timer. In this mode, output
from the timer is activated at fixed intervals. The length
of these intervals range from 800 nanoseconds to 1.7 seconds.

This range supports the design requirement for an 8.3

58

-5

ND

SND
CNTRL

A00%
oot

REML=) coMPIN 19 n
N X1 Veg 4
N Smar I 24
\ Sem T
N X Q inie J
A
T g BV7 R
o7] 1
e > I Z—
Ne— " o mm——
L J
INS
INI |
AN ——
- — ¢ BN PC
Figure 9. I/O Ports, Timers, and A/D Converter
59

millisecond sample interval. It also allows a wide time
range for changing sensor sampling rates.

Timer 1 is used in its square wave generator mode to
provide the clock input for the A/D converter peripheral.
Valid input frequencies for the ADCO817 range from 10 KHz to

1200 KHz, with manufacturer specifications being computed at

640 KHz (Ref 3:1-186 ~ 1-187). 1In its square wave mode, with
a prescaled clock input of two, Timer 1 can provide a range
of output frequencies from 1250 KHz down to 19 Hz. Note,
however, that the distribution of frequencies is not uniform
throughout the range. Valid frequencies are clustered more
heavily towards the low end. The sequence of valid Timer 1

output frequencies follow the pattern:

1250k / 1 = 1250 KHz,
1250K / 2 = 625 KHz,
1250K / 3 = 416.5 KHz,
1250K / 65,536 = 19 Hz.

General 1/0., In addition to the two timers described
above, the NSC810 provides two general purpose I/0 ports for
the IR prototype. Each port is eight bits long and can be
addressed at the bit level. 1In addition, the direction of
data flow, in or out, 1is selectable for each bit. Therefore,
one port can carry both input and output at the same time.
Another feature of the NSC810 is that Port A is capable of
strobed I/0, This allows handshaking between the IR and an
external CPU for such functions as dumping data from the IR
to a database, or for programming EEPROM's without removing

them from the IR. (Ref 24:A-31 - A-33)

60

e A

r-—-——-——-'—-———-—————“

The general purpose I/0 ports have not been hardwired to
take advantage of any particular capability of the NSC810.
The ports were wirewrapped only far enough to verify that
they communicate properly with the CPU, Configuring the

ports is best handled in parallel with software development.

A/D Converter. The fact that the NSC810 has an 8085
hardware architecture simplified interfacing of the A/D

converter. National Semiconductor's CMOS Databook contains a

schematic for interfacing the ADCO817 to an 8085
microprocessor {(Ref 3:1-193)}. Construction of the A/D
Converter peripheral followed National Semiconductor's
proposal. Still, clarification of a few of the connections
is appropriate.

The ADCO817 uses the low order four bits of the
peripheral address to select the sensor channel to be
converted. To minimize bus loading on the multiplexed
data/address bus, the channel select is obtained from bits 8§
through 11 of the address bus,

Two factors determine the voltages to be used as
references in the A/D Converter. One is the bias voltage of
the ADC0817, and the other is the output voltage range of the

analog sensors (Ref 3:1-191)., Since the bias voltages are

ground and +5V, and since the analog sensors are conditioned
for OV to 5V outputs, reference voltages for the ADCO817 are
OV and +5V, The low reference 1is obtainmed by a direct
connection to ground. Capitalizing on the fact that output

from a CMOS gate comes very close to the bias voltage of the

61

chip, the high voltage is obtained from the output of an
iaverter.

Using the output of an inverter proved adequate for
showing that the ADCO0817 worked properly. An oscilloscope
trace of the inverter output showed a constant 5V signal
being coupled with 0.1V of noise. Assuming that the 0.1 /
256 = .4 millivolt error introduced by the noisy reference 1is
acceptable, use of the inverter as a positive reference 1is
adequate for the IR prototype. However, using inverter
references in a flyable IR is risky, as it depends on at
least two variables., One is that output from an inverter
gate is not guaranteed to equal the chip supply volatge.
Another is that the supply voltage in a flyable IR may
degrade with prolonged use of the batteries, resulting in a
decreased reference voltage. If allowances are not made for
these two variables in the flyable IR, then the voltage
reference circuit must be redesigned.

The end of conversion signal generated by the ADCO0817
provides a conversion complete interrupt to the CPU, A
peculiarity exists in this structure. That is, the end of
conversion signal remains active until another conversion 1is
started. So, the conversion complete interrupt can not be
reset between sampling tasks without additional hardware.
Using a data FF to buffer the interrupt, the end of
conversion signal could pass to the CPU and be reset whenever
the converted data was read. While this method of

controlling the interrupt is simple, it requires an

62

additional chip. In keeping with the minimized bulk
requirement of the IR, a hardware solution is abandoned in
favor of software. Chapter 1V discusses the software
solution to the conversion complete interrupt problem.

MBM. The schematic for the MBM peripheral appears in
Figure 10, Interface of the peripheral is simplified by the
fact that all data transfers take place through the BMC. The
hardware architecture of the BMC for interfacing
microprocessors looks similar to that of many peripherals.
That is, interfacing the BMC to a processor requires
connection of the data bus, address bus, read and write
strobes, chip select, and system reset. Additional pins are
provided for interrupt and direct memory access processing.

As mentioned previously, the BMC is an HMOS IC,.
Consequently, two precautions are taken to insure accurate
communications with the P2CMOS CPU. One is that 10K ohm pull
up resistors are used at connections where HMOS provides
input to P2CMOS. The other is that P2CMOS outputs are loaded
with only one HMOS input.

The MBM is wired to take advantage of the interrupt
processing capability of the BMC. Active high signals for
buffer half full and operation complete are fed through
buffers to the RSTA* and INTR* pins of the NSC800. The need
for these interrupts is explained in the next section of this
chapter,

In additionm to the signals mentioned above for

interfacing the BMC to the CPU, the MBM requires a 4 MHz

+5
G,
CONTRO— < S W
a00% 1
10
2\
[
20,
- Z‘X v 1
L o g .0t
Il
.0
“ 1} Pwk Ve
gu vee — - 5.__.5%!-".7. ir,:
> @ = i r
N éc xr-sl RO ?;u
A g B%Lg - J D, - v |
g & -~ NTR % ;
Sea Bl mos O wirsva
A e
) m_xis
¢ |
\} > J ‘
o T gesel Chp | g
are I 1 34 3INC
N / vee b 5
N 00 o5 44 %O
h— 3 g ang
\ 0 B lox
A a m: 1>
N a7
(4co 07
CND nﬁ
~ Lran—]
wox
.7,
2
m G IMug
!
.y,

To 8pPx-72

Figure 10. MBM

84

clock having a 50 percent duty cycle. The circuit appearing
below Ul6 in Figure 10 is a crystal controlled oscillator for
providing the required clock. The circuit is an adaptation
of the one used for the NSC800 clock input. Ul7 provides
buffering to produce a conrstant load om oscillator output.
The oscillator with buffering provides a stable clock.

The MBM and drive circuitry is not shown in Figure 10.
Instead, only the conmections that must be made from the BMC
to the MBM board are shown, The MBM is mounted on a BPK-72
printed circuit board, which has previously been tested using
the MBM Interactive Development System. Design of the MBM
peripheral for the IR prototype involved removing the BMC
from the BPK~-72 and placing it with the other components of
the IR. A cable connects the MBM to the BMC for completing
communications within the MBM peripheral. Additional
connections, not shown in Figure 10, carry power to the

BPK-72.

Interrupt Structure

IR prototype design implements a hierarchy of
interrupts. Basically, there are two reasons why the IR
needs an interrupt capability. One is that it allows data
samples to be started at fixed, known intervals. Another
reason is that interrupts allow software tasks to run
concurrently. That is, several tasks can be initiated before
any one completes. Interrupt usage is clarified in following
paragraphs where the rationale for specific interrupts are

explained.

TABLE IX

IR Interrupt Structure

Interrupt CPU Interrupt
Priority Signal Function
1 RSTA* Fixed Interval Generator
2 RSTB* MBM FIFO Half Full
3 RSTC* A/D Conversion Complete
4 INTR* MBM Operation Complete
or
MBM Error

Five 1levels of interrupts are provided by the
prioritized interrupt request pins of the NSC800. Of the
five, only RSTA*, RSTB*, RSTC*, and INTR* are used. To
reduce hardware requirements, the interrupt structure relies
on the NSC800's Mode 1 processing scheme. In Mode 1 the
response to a recognized interrupt is a jump to one of the
NSC800's dedicated restart addresses. Other interrupt
processing modes require external hardware to generate a
restart sequence (Ref 24:4~16 - 4-21,A-15 - A-17). Table XI
outlines the interrupt structure used in building the IR
prototype.

The interrupt with the highest priority is the one
generated by Timer 0 of the NSC810, RAM-I/0-Timer chip. It
has the highest priority so that sampling intervals can be

precisely defined. As soon 3as Timer 0 interrupts, software

P S

starts the A/D conversion of the next required sensor,
Should other interrupts be allowed to preempt the timer,
sampling intervals would have unpredictable lengths.
Consequently, the collected data would have an unknown skew
from sample to sample.

The interrupt with the second highest priority is the
one indicating that the MBM FIFQO buffer is onrly half full.
Once an MBM opertion has started, "the user must keep up"
with the FIFO data buffer (Ref 2:3-8,3-17). "Keep up" means
avoiding FIFO underflow during writes, and overflow during
reads. Underflow and overflow problems stem from the fact
that the FIFO is only 40 bytes long, whereas, the shortest
MBM transfer 1s 64 bytes. In a system where only one bubble
is operating, as projected for the IR in Chapter II, the
maximum transfer rate is 50K bytes per second (Ref 2:3-5),.
This translates to one byte every 20 microseconds. During an
MBM write which begins by filling the FIFO, the half full
interrupt activates whenever 22 bytes are empty (Ref 2:3-8).
This allows approximately 360 microseconds (18 x 20) before
an underflow occurs. Similarly, during a read operation the
half full interrupt indicates that 22 bytes are available for
input (Ref 2:3-8), :llowing 360 microseconds before a FIFO
overflow. In either case there is a time margin available
for servicing MBM FIFO half full interrupts.

Priority level 3 interrupts are less time critical than
the interrupts of higher priority. With projections derived

from Chapter II, the IR prototype has approximately 8.l

. P

milliseconds in which to service A/D conversion complete
interrupts. At 122 samples per second, there are 8.3
milliseconds between the starts of samples. Allowing for the
typical conversion time of 100 microseconds (Ref 3:1-187),
there are 8.2 ~ .1 = 8.1 milliseconds between the time that
an interrupt occurs and the time that the next sample must be
initiated.

The interrupt with the lowest priority 1is the one
indicating that an MBM operation has either completed
normally or with an error. Both interrupts originate from
the same MBM pin. BMC status tells which event caused the
interrupt. During normal operation, servicing of these

interrupts is mnot critical,

Conclusion

This chapter has described the theoretical and practical
considerations involved in constructing the IR prototype.
Details of hardware construction for each component were
highlighted. The next chapter details software techniques

for driving this newly constructed IR prototype.

68

O

IV Hardware Verificationm Program

This chapter describes software used to verify the
design and construction of the IR prototype. The program
used to exercise the IR prototype 1is called IRTST. It is
located at the end of the chapter, in Figure 11, Throughout
this chapter, software descriptions are made with reference
to IRTST.

Verification of design and construction involves
exercising at least one capability of each component in the
system., While IRTST is not a comprehensive test of every
capability, it does show that the system components are
interfaced properly. In addition, it provides a basis for
understanding how the components operate. Reference material
is available in Appendix E for expanding this basis and for
tailoring the components to meet future prototype software
requirements.

In general the flow of execution through IRTST is:

1. initialize the components,

2. £fill a buffer with information obtained
alternately from an input port and the
A/D Converter,

3. dump the filled buffer to the BMC FIFO,

4., read the BMC FIFO, and

5. compare the input and output of the BMC
FIFO.

The operations of step 2 are accomplished under interrupt

control., Every time a byte of information is moved to the

buffer, it is displayed on an output port and the system is

69

e .J“i

halted for about a second. Timer interrupts restart the
system from its halted state.

Throughout program execution, values for indicating
program status are written to an output port, A monitor on

the output port reveals the following sequence:

1. FF
2. Al

system reset,

this value was hardwired on the imput

port for the test,

3. XX - byte obtained from analog sensor #7,

4, «s+ Subsequence 2 and 3 are repeated 40
times (the size of the BMC FIFO),

5. 55 - constant output for 3 seconds to

indicate that the BMC FIFO0 has been

written and is about to be read,

successful completion, or

FIFO write and read do not match.

6. DO
FF

Monitoring this sequence helps to verify that the program is
executing properly and that IR components are functioning as
expected.

Duriug construction of the IR prototype, programs were
written to assist in debugging hardware as it was added to
the system. The fact that all of these test programs,
including IRTST, executed correctly shows that both the CPU
and program memory function properly. The software provided

by IRTST verifies operation of the other components.

Buffer Memory

The sequence of indicators outlined above shows that RAM
functions properly. The main reason for this conclusion is
that the code, which produces the outputs in steps 2 and 3,
relies on subroutine calls and interrupt servicing. Both of
these tasks use a program stack to temporarily store return

addresses, If RAM were not work-‘ng, invalid addresses would

70

[SRS

be retrieved from the stack, resulting in unpredictable
program behavior.

Another factor for concluding that RAM functions
properly involves buffering of data. At address 0l64H, an
output buffer is dumped to the BMC FIFO. Later, at 0178H,
the FIFO is read into a separate input buffer. Then the
output and input buffers are compared. The fact that IRTST
ends with a DO status ~einforces the belief that RAM operates

properly.

Timers

The NSC810 is equipped with two genmeral purpose timers,
each having six software selectable modes of operation. Both
timers are used in the IR prototype. Output from Timer 1 is
the master clock input for the A/D Converter. Timer O
provides a fixed interval interrupt for the CPU.

Before either timer is used it must be initialized. For
Timer O this involves writing a control byte to the Timer
Mode Register. For Timer 1, it involves setting the
direction of data flow for pins 1, 2, and 5 of the NSC810 1in
addition to setting the Timer Mode Register (Ref 24:6-7 =~ 6=
12, A-34 - A-38). Code appearing between addresses Ol13H and
012DH shows how the timers were initialized for testing the
IR prototype.

Timer 1, The five instructions used to configure and

start Timer 1 are all that are needed to provide a clock for

the A/D Converter. The first two instructions, at OllFH,

configure the timer as a square wave generator. The next two
instructions init .alize the generator's output frequency,
while the instruction at 0l129H starts the generator. The
output frequency provided by IRTST is as close as possible to
the typical operating frequency of the ADCO817. With the
input frequency to the timer being divided in half by the
mode setting, and with a timer count value of one, Timer 1
output is 625 KHz. During testing this output was verified
with an oscilloscope.

Timer 0. To provide fixed interval interrupts to the
CPU, Timer O is configured as an Event Counter, The event
counter works by generating an active output whemever a user
loaded count reaches zero. Timer output is deactivated by
reading the count value. (Ref 264:6-8)

The six instructioms starting at address O0l113H,
initialize Timer 0 in two important ways. One is that they
produce an active output every 0.95 (= 2.5 MHz / 64 / 40960)
seconds., The other way is that timer output is active when
low. The polarity of Timer O output is important since it is
connected directly to the RSTA* pin of the NSC800. This
connection also forces any IR programs that enable RSTA* to
include interrupt servicing routines.

Once an RSTA* interrupt is recognized, the NSC800 jumps
to location 003CH for its next instruction. At that point
IRTST software contains a8 jump instructionm to the Timer 0

interrupt servicing routine, TOSHNDL. Since the timer

interrupt is only being used to awaken the CPU from a halt

state, TO$HNDL needs only to deactivate Timer 0 output and
reenable NSC800 interrupts. Upon exiting TOSHNDL, control
returns to address 0l9FH, followed by a return to program
execution.

The statement - that control passes to 019FH after Timer
0 interrupt processing - is made with confidence. The
interrupt frequency is intentionally low to simplify the
verification process. All tasks within the IRTST program
take much less than 0.95 seconds to execute. Therefore, the
CPU is always in a halt state at O0l9EH before Timer O
interrupts. Interrupt frequency will be much higher 1in
prototytpe software, possibly causing return addresses to be

unpredictable.

General I/0

As mentioned in Chapter III, wiring of I/0 ports was
deferred until prototype software requirements are defined.
At this time it is impossible to predict the mix of I/0 pins
required for a flyable IR. Therefore, verifying general I/0
operation is restricted to showing that both input and output
are available through the NSC810.

While the NSC810 provides 22 pins for general purpose
1/0, only 16 are available within the IR. The other six are
used for Timer 1 and strobed I/0. The 16 available pins are
split between Port A and Port B. However, the bits of each
group are individually addressable in any combination of

input and output (Ref 24:6-3 - 6-4,A-31 - A-33). This

73

- 4

“

flexibility is another reason why design of system I/0 was
postponed.

IRTST does not test every capability of the NSC810 I/0O
ports. Instead, Port A is initialized for strobed output,
and Port B is initialized for input. To verify operation of
the output port, a one byte monitor is connected to Port A
during testing. An AlH is hardwired to Port B, insuring that
input values are known constants,

As with the timers, the I/0 ports of the NSC810 must be
initialized before they are used. Important tasks during
initialization are to set the direction of data flow through
each pin of the two ports and to set the type of I/0 to be
performed by Port A, Type of I/0 does not have to be set for
Port B since it is capable of only basic parallel 1I/O.
However, Port A has an additiomal capability for strobed I/O0.
When strobed 1/0 is enabled, an additional task of
initializing the data direction for the strobe control pins
must be done. The instructions between address 0103H and
0111H perform the initialization tasks outlined in this

paragraph.

A/D Converter

Obtaining data samples from the A/D Converter can be as
easy as reading and writing an I1/0 port. To begin the
conversion process, a program selects the desired channel via
an output instruction to the proper address. The single
instruction at 0l147H is an example. The data byte output is

irrelevent to the conversion process. At some later time,

74

when the conversion is complete, the program reads the sample
value from the A/D Converter. The instruction at 0301H
illustrates reading the sample. However, in a more general
case, the input address does not have to match the output
address. Since the A/D Converter only has one register in
which to hold sampling results, any address read will
retrieve the value of the last sample started.

While obtaining sample data is straightforward,
coordinating the A/D Converter's interrupts is more
challenging. As alluded to in Chapter III, the IR prototype
does not contain hardware for clearing conversion complete
interrupts, From the time one sampling task is complete to
the time that another is started, the conversion complete
interrupt remains active. Because the interrupt can not be
reset, it must be managed differently from interrupts such as
RSTA* which can.

The conversion complete interrupt is assigned to the
RSTC* pin of the CPU. The method for managing RSTC* is to
keep it disabled within the NSC800 until a sample is
requested. This management takes place in three different
locations within IRTST. First, during system initialization
RSTC* is disabled. This is accomplished by writing a zero to
the RSTC* bit within the Interrupt Enable Register of the
NSC800 (Ref 24:A-17)., The module at address 0l2FH shows how
the RSTC* interrupt is disabled while other interrupts are
enabled. A second place where RSTC* is managed is at 0149H.

There the conversion complete interrupt is emabled just after

75

a sample conversion is requested. The conversion complete
interrupt servicing routine, ADCSHNDL, is the last place
where RSTC* is managed. Again, RSTC* interrupts are disabled
while others are enabled, exactly as was done during system
initialization.

In addition to enabling the RSTC* interrupt at location
0149H, RSTA* was also enabled. This action is a consequence
of the fact that bits within the Interrupt Enable Register
can not be individually addressed. Still, RSTA* is enabled
with confidence, knowing that it is always enabled except
when it is being serviced. A more complex algorithm for
enabling interrupts may be required for the increased

interrupt activity in the flyable IR,

BMC

All requests for MBM I/0 pass through the BMC. Because
the MBM peripheral does not work, a first step in tracing the
malfunction is to verify communications between the CPU and
the BMC, One simple test for determining proper
communications is to write and read a test pattern using the
FIFO registers within the BMC.

The BMC contains many registers, but only a single
address line. Therefore, a channel command word must be
written to the BMC telling which register is to be accessed
(Ref 2:3-1 - 3-~3). The two instructions at 0l60H illustrate
how the BMC is initialized for accessing the FIFO. Once the

BMC points to the FIFO, it is available to the system as a

76

general purpose FIFO (Ref 2:3-8). The instrutions at 0164H
show how a data buffer is dumped to the FIFO using an NSC800

block I/0 command. Similarly, the FIFO is read at 0174H,

Conclusion

The program illustrated and described in this chapter
verifies operation of the major hardware components in the IR
prototype. While the MBM is not fully operational, IRTST
verifies that proper communications exists between the CPU
and the BMC. All other components operate as expected for

the set of capabilities exercised by IRTST.

NACRO-80 3.36 17-Mar-80 PAGE 1-1

.280
0000° ASEG

sTITLE: IR TEST - SYSTEM TEST FOR IR PROTOTYPE

;AUTHOR: CAPT R E MEISNER

;DATE: 4 MAR 82

;SYSTEM: IFPDAS IR

;0PERATION: THIS PROGRAM DENONSTRATES OPERATION OF THE FOLLOWING

A/D CONVERTER
MBM CONTROLLER

SAMPLE SENSOR a7
READ & WRITE FIFO

TRANSFER OF DATA BETWEEN THE BUBBLE MEMORY COMTROLLER
(BMC) AND THE MBM IS NOT EXERCISED BY THIS PROGRAM

H COMPONENTS OF THE IR PROTOTYPE:

b}

H COMPONENT S/W EXERCISE

A3

3 CPU - PROGRAM EXECUTION
3 PROGRAM MEMORY - PROGRAM STORAGE

3 Ran - STACK, DATA BUFFER
3 TIMERS - FIXED INTERVAL INTERRUPT
H INPUT - READ PORT B

3 QUTPUT - WRITE TO PORT A

3

3

3

i

3

SRR CONSTANTS S5 E3 6 HIHEHEHE OO X

0088 IER EQU 0BBH 3170 PORT FOR INTERRUPT ENABLE REG

0004 IERVAL EQU 0AH ;ENABLE RSTA AND RSTC INTERRUPTS

0003 STBOUT EQU 03H 3STROBED OUTPUT MODE TO ACTIVE BUS

0000 DDIN EQU Q0H sINPUT DEFINITION FOR DDR

Q0FF DDOUT EQU OFFH ;OUTPUT DEFINITION FOR DDR

0023 DDCTRL EOU 204 ;DIRECTION DEF FOR PORT C CONTROL

0019 TOMODE EQU 194 sMODE FOR TIMER 0 - EVENT COUNTER,
sRD/WR ONE BYTE, PRESCALER = 44

00.5D TINODE EQU ADH jHODE FOR TIMER 1, SQUARE WAVE GEN
sRD/WR TWO BYTES, FRESCALER = 2

0000 TOSCLO EQU 00H 3LO BYTE -- COUNT VALUE

00A0 TOSCL1 EQU 0AOH sHI BYTE -- FOR 0

0001 TiSCLO EQU 01H 3LO BYTE -- COUNT VALUE

0000 TISCL1 EQU COH 3HI BYTE -- FOR 1

PAGE

Figure 11, IR Prototype Verification Program (page 1 of 7).,

78

0020
0021
0024
0025
0025
0027
0030
0031
0032
0033
0034
0035
0034
0037
0038
0039

0040
0047

004F

0088
0089
0089

0000

0012
0013

MACRG-80 3.36 17-Mar-80 PAGE 1-2

Fiqure 11,

y#%% NSC810 PORT ASSIGNMENTS wxes

PORTA EQU 20H
PORTB EQU 21H
DORA EQU 24H
DDRBP EQU 254
DDRC EQU 26H
MDRA EOU 27H
TOLB EQU 304
TOHB EGU K
TiLB EQU 324
TiHB EQU 33H
TOSTOP EQU 34H
TOSIRT EQU 35H
TISTOP EOU 344
TISTRT EQU I7H
TMRO EQU 38H
TMRY EQU I9H

y#x% A/D CONVERTER SENSOR ADDRESSES #xx

ADCO EQU 40H
Jeee AND OTHERS ..,
ADC7 EQU 474
e e AND OTHERS +..
ADCF EQU AFH

s#%% NBM 1/0 PORT ASSIGNMENTS
BR$DATA EQU 88K

BMSCND EQU 894
BM$STAT EQU 894

$MEM DATA (1/0)

sMBN STATUS (IN ONLY)
s##% REGISTER ADDRESS COUNTER (RAC) ASSIGNMENTS

FIFO EQU OOH $FIFO 1/0 REGISTER
;%% NBM COMMAND CODES

BMskD EQU 124
BNSUR EQU 13H

3READ BURBLE DATA
sWRITE BUBBLE DATA

SRR END CONSTANTS S0 10060600000 300 SR I 030063 0000606 0000 0 M

PAGE

IR Prototype Verification Program (page 2 of 7),

79

sMEM COMMAND (OUT GNLY)

MACRD-80 3.36 17-Mar-80 PAGE 1-3

$EHREHHCHOHOEE UARTABLES #3600 09I IHEI IO IO K60 16000060006 0630 D

———

ORG 2000H sBEGINNING ADDRESS OF RAM
2000 DS 64 sé#x DEFINE SYSTEM #u
2040 STACK EQu $ JHRR STACK 111
2040 SAVER: DS 1 sONE BYTE TEMPORARY SAVE AREA

ORG 3100H s(ADDRESS WITHIN ANOTHER RAM)
0028 FIFOLN EQU 40D sLENGTH OF FOLLOWING FIFQ BUFFERS
3100 FIFOUT: DS 40D yBNC FIFO QUTPUT BUFFER
3128 FIFOIN: DS 40D sBNC FIFO INPUT BRUFFER

sentteasskat END VARTABLES el it kit it NN AR AR RRERHH 2N

ORG 0000H
0000 C3 0100 JpP START 3START AT BEGINNING ON SYSTEM RESET

ORG 002CH 3RSTC INTERRUPT ENTRY
002C €3 0300 JpP ADCSHNDL 3A/D CONVERTER INTERRUPT

ORG 0034H sKSTR INTERRUPT ENTRY
0034 75 HALT sNOT YET SUPPORTED

ORG 0036H sINTR INTERRUPT ENTRY
0038 74 HALT $NOT YET SUPPORTED

DRG 003CH sRSTA INTERRUPT ENTRY
003C €3 0200 JP TOINTSHNDL sTINER O INTERRUPT

ORG 0100H
0100 31 2040 START: LD SP,STACK $INIT STACK PNTR

Figure 11, IR Prototype Verification Program (page 3 of 7).

80

MACRO-80 3,36 17-Mar-80 PAGE 1-4

e e e

P R B E R B X X X R K X K KEE

s#%% SET UP NSCB10 1/0 PORTS ### !
SHHE X B B R K K & X K KK EEE

0103 3L FF LD A,DDOUT yeue INIT ALL PORT A *x«

0105 D3 24 ouT (DDRA) ,A s¢x% BITS AS QUTPUT exs

0107 3E 00 LD A,DDIN ye*% INIT ALL PORT B #xx

0109 D3 29 ot (DDRB) ,A j¥%% BITS AS INPUT #as

0108 3k 23 LD 4,DDCTRL s INIT DIRECTION OF ###

0100 03 26 gur (DDRC) A y#a% CONTROL BITS — #xx

OL0F 3E 03 LD A,STBOUT y*#% INIT FORT A FOR *xx P
0111 03 27 out (MDRA) ,A y#%% STROBED OUTPUT *xx

JEEE K K K K X XX X X K K XK

sa% SET UP NSC810 TIMERS wux
JHER K K K % K B K X K K K EXK

o3 38 19 LD A, TONODE ;%% SET UP TIMER 0 AS »##

0115 D3 38 T (TMRO),A ;#%% EVENT COUNTER wex

0117 3¢ 00 LD A,T0SCLO 4% INIT wew

0119 D3 30 0UT (TOLB),A ee% TIMER wxx

OLlE 3 A0 LD A,T0SCL1 NPT

0110 D3 A OUT (TOHB),A sH%% COUNT wxx

01lF 3E 6D LD A, T1NODE s#%% SET UP TINER 1 AS wex

0121 D3 3¢ 0T (TNR1),A %% SQUARE WAVE GEN #x#

0123 3E 01 LD A,T1SCLO ;4% INIT TIMER wex

0125 D3 32 0UT (TILB),A ek 1 COUNT ex

0127 1335 0UT (T0STRD),A 1#9% START THE we»

0129 D3 37 OUT (TISTRD),A ¥k COUNTERS wxx

0128 DB 30 N A, (T0LB) 348t INSURE TINER 0 #xx

0120 DB 3 N A, (TOHB) 1##% INTERRUPTS ARE RESET #x
PAGE

Figure 11, IR Prototype Verification Pragram (page 4 of 7),

a

012F
0131
0133
0135
0137

0138
013B

013D
013F
0140
0142
0143
0144

047
0149
0148
014D
0150
0153
0154
0156
0157
0154

015C
015E

0140
0142

MACRO-80 3,36

3E 04
E6 FD
D3 BB
ED 56
FB

21 3100
06 28

0B 21
17

D3 20
a3

05

CD 0199

D3 4
3E 0A
D3 BB
€D 0199
34 2040
77

03 20
23

cD 0199
10 E1

3ESS
0320

3E N0
D3 &9

Figure 11,

17 -Mar-80

PAGE

1-5

RULEEEREEEEREEEEEER: !

yex% SET UP INTERRUPT STRUCTURE x#
THEE B B X K K K R R R K K X K K MR

LD
AND
T
m
Bl

A, IERVAL
OFDH
(IER),A
1

THEE K B B K K ¥ B RN

see IR TEST LOOP xx
JEEE K K ¥ X K ¥ K ENE

LD
LD

LooP: IN
LD
aur
INC
DEC
CALL

T
Tt
CALL
LD
LD
Ut
INC

CALL
DJNZ

LD
out

LD
ouT

HL,FIFOUT
E,FIFOLN

A, (PORTB)
(HL) ,A
(PORTA) ,A
HL

B

WAIT

(ADC7) 48
A, 1ERVAL
(IER) A
WAIT

A, (SAVER)
(HL) ,A
(PORTA) A
HL

WAIT

LOOP

A,S5H
(PORTA) ,A

A,FIFO
(BNSCMD) ,A

sENABLE SYSTEM INTERUPTS

sTURN OFF RSTC

ySET INTERRUPT ENABLE REG

3SET INTR FOR RSTX TYPE INTERRUFTS

ySET PNTR TO FIFO OUTFUT BUFFER
sINIT BUFFER LENGTH COUNTER

sREAD PORTB

3SAVE VALUE JUST READ
$WRITE VALUE

sINC BUFFER PNTR

3DEC BUFFER BYTE COUNT

3START A/D CONVERSION
ye%% ENABLE RSTA & wxx
yeex RSTC INTERRUPTS xxx

3#%% SAVE VALUE »##
je6% JUST READ %%
sWRITE VALUE

sINC BUFFER PNTR

;DEC BUFFER BYTE COUNT AND
;L00P UNTIL BUFFER FULL

yese QUTPUT FIFQ TEST xx
y¥## STARTED INDICATOR wx

s##% SET BMC PNTR #ax
teee TO FIFO *wx

IR Prototype Verification Program (page 5 of 7),

82

MACRO-80 3.36 17-Mar-80 PAGE 1-4

0164 06 28 LD B,FIFOLN y¥%% DUNP BUFFER *xx

0166 21 3100 LD HL,FIPOUT JERR T0 LE]

0149 ED B3 OTIR sk BNC FIFD wxs

0168 CD 0199 CALL WAIT sWAIT A WHILE

016E CD 0199 CALL WAIT

0171 CD 0199 CALL WAIT

0174 06 28 LD b,FIFOLN s%%% FILL BUFFER #xx

0176 21 3128 LD HL,FIFOIN y¥*% FRON ek

0179 ED B2 INIR y¥%% BNC FIFD ##x

0178 11 3100 LD DE,FIFOUT j#%% INIT COMPARE *x%

017E 21 3128 LD HL,FIFOIN y¥% LOOP DRIVING *#x

0181 01 0028 LD BC,40D jexx PARAMETERS x»

0184 18 LD A,{DE) sGET FIFO OUTPUT BUF VALUE

0185 ED Al CPLP: CPI sCOMPARE QUTPUT TO INPUT BUFFER

0187 13 INC DE sBUMP PNTR

0188 20 09 JR NZ,ERRFF ;ERROR - BUFFERS NOT THE SAHME

0184 EA 0185 JP PE,CHPLP ;LOOP UNTIL END OF BUFFERS
;BUFFERS COMPARED 0K

018D 3E DO LD A,0DOH y%*% QUTPUT SATISFACTORY wxx

018F D3 20 outr (PORTR) ,A yé%% COMPLETION INDICATOR *x»

0191 F3 DI

0192 74 HALT

0193 3E FF ERRFF: LD A, 0FFH yaux QUTPUT BAD COMPARISON *xx

0195 D3 20 out (PORTA) ,A R21 INDICATOR LA

0197 R DI

0198 74 HALT

LA IR IR S R Bk BE R IR BN B R A% 41

s#%% WAIT FOR AN INTERRUPT wwn
HUNENEEEEREREEERN:L

0199 F5 WAIT: PUSH AF

0194 7% HALT
0198 Fi PoP AF
019Cc C9 RET

PAGE

Figure 11, IR Prototype Verification Program (page 4 of 7).

83

AD-A118 072 Arx‘al;gfgsﬂ;uggcgzngscgnmgnr-PnTEnsou AFB OH_ SCHOO=<ETC F/G 14/3
Al s OTOTYPE FOR THE INFLIGHT PHYSIOLOGI -

) FEB 82 R E MEISNER CICAL p--ETCIU]

UNCLASSIFIED AFIT/GCS/EE/82M-5 NL

203
:‘80]
—

0200
0200

0201
0203
0205

0206
0207

0300
0300

0301
0303

0306
0308
0304
030C

0300
030E

MACRO-80 3.356

FS

DB 30
DB 31
FB

F1
ED 4D

F5
DB 47
32 2040

3E 0A
E6 FD
D3 BB
FB

F1
ED 4D

Fiqure 11,

17-Har-80 PAGE

1-7

R EEEEEREEREEERERE:]

s*x% TIMER O INTERRUPT HANDLER *#%
JHRE K K X B K K R KB K E K K OKEE

ORG
TOINTS$HNDL:
PUSH

IN
IN
El

PoP
RETI

0200H
AF

A,(TOLB)
A, (TOHB)

AF

s##% RESET TIMER 0
s*¥%% INTERRUPT

SENE £ & X K K K F X % X X K K K K ¥ KX

j#%% A/D CONVERTER INTERRUPT HANDLER *xx
SENE K K K K K K K K K K K K E K K K HKK

ORG
ADCSHNDL:
PUSH

IN
LD

LD
AND
ouT
El

POP
RETI

END

0300H
AF

A, (ADC7)
(SAVER) ,A

A, IERVAL

OFDH
(IER),A

AF

y%#% SAVE CONVERTER
JRRE VALUE

3a%% DISABLE *x
s¥%% ONLY RSTC sxx
s#%% INTERRUPTS xxx

IR Prototype Verification Program (page 7 of 7).

a4

E324
€%%

£33)
*RE

V Conclusions and Recommendations

—

With two exceptions, the IR prototype constructed in
this thesis conforms to the hardware architecture previously
defined in Figure 2. One exception is that testing of the
MBM peripheral is not complete, The other is that RAM is
increased to allow software experiments to vary MBM data
buffer sizes. In addition to wirewrapping a prototype,
thesis results include construction of several tools to
support system development.

Appendices to this thesis contain documentation and
user's manuals for IR prototype support tools. Tools that
can be found in the appendices are:

Appendix B - EEPROM Programmer,

Appendix C - MBM Interactive Development System, and

Appendix D - IR Debugging System.

The EEPROM programmer is used to dump software from floppy
discs to HNVM3008 EEPROM's. The MBM Interactive Development
System is primarily a tool for teaching new users
capabilities and limitations of the Intel 7110 MBM. The
capabilities taught are those pertinant to the IR,
Additionally, the development system can be used to
troubleshoot and verify MBM operation. The last support
tool, the IR Debugging System, is a hardware front panel for
the IR prototype. It provides a minimum level of software

debugging support when connected to the IR prototype.

Conclusions

The scope of this thesis allowed design requirements to
be developed, and a prototype to be constructed. Time
constraints forced an end to this thesis before a definmitive
analysis could show that the IR prototype adheres to the four
required characteristics outlined in Chapter II. The two
requirements for the IR to be solid-state and microprocessor
controlled are incorporated into the hardware architecture.
More work must be done before definitive statements can be
made about the wunobstructive and battery operated
requirements.

While it is too early to say that the IR will be
unobstructive, its thickness should be smaller than the two
inches that pilots found restrictive in the IFPDAS I. This
estimate is based on the likely assumption that the IR will
consist of IC's housed on a printed circuit board. An upper
bound on the length and width of a flyable IR is the current
area of the wirewrapped prototype. This area, 13 x 4.5
inches, is projected to include the MBM interface but not the
MBM's themselves., Density of IC's in the flyable should be
greater than that of the wirewrapped prototype, An
additional factor that could reduce board area is the
possibility that some IC's can be eliminated once software is
developed for the IR, The upper bound just developed for the
IR does not include space for the MBM storage peripheral. A

discussion of MBM space requirements fo lows under

86

r-—————————-——v-——-—»

Recommendations. Estimates of the unobstructive property of

the new IR must wait for further system development.
Until software is running on the IR prototype, battery

operated requirements can only be rough estimates. One

important estimating factor is that power dissipation in CMOS j
components varies with operating frequency. Even if the
operating frequency of each component could be projected,
NSC800 documentation does not contain the figures required to
accurately estimate power consumption., Another important k

factor is that current draws vary within MBM's, depending on

I1/0 frequency and numbers of parallel operating bubbles.
Therefore, accurate estimates on battery requirements must
wait until the system can be exercised by software.

In addition to the statements made about required
characteristics, the following observations relate to desired
characteristics. There are 16 A/D converter channels

available which accept OV - 5V conditioned inputs. OQutput

from any channel to the CPU is available 100 microseconds
after conversion is started, allowing a maximum sampling
frequency of 10,000 per second. In addition to being able to
increase the sampling rate of sensors, other design
characteristics leave room for expansion. A discussion of
how each IR component can be expanded is found in the

component subsections of Chapter II. An evaluation of the

last desired characteristic of four hour operation depends on

a solution to battery operated requirements. Therefore, all

87

desirable characteristics with the exception of four hour

operation have been achieved in the IR prototype. }

Recommendations

As mentioned above, the IR prototype is not fully
operational. Until it is, unobstructive size and battery
operated requirements can not properly be evaluated.
Therefore, the first step should be to complete prototype
construction by debugging the MBM peripheral. The peripheral
has been wirewrapped as specified by the design in Chapter

ITI. Communications between the CPU and BMC has also been

verified. However, initial tests could not access the MBM 4
itself. Software to debug and ultimately drive the MBM
peripheral can be adapted from modules found in Appendix C.
Another high priority task should be to develop a
software prototype for the IR, Once software is developed,
hardware component requirements can be optimized. This

optimization should result in a reduction of the number of

IC's used in the flyable IR. Another reason for completing
software early in the next thesis cycle is that it will allow
the system requirements for battery operation and system bulk
to be evaluated. Then a descision can be made about
continued IR development.

An important point must be made with reference to the

MBM secondary storage peripheral. Continued development with
the current 1M bit MBM's will pro~sbly result in an IR that

is too bulky. However, Intel has annoumced that 4M bit

88

bubbles will be available for general sampling during the
first half of 1983 (Ref 25). With the lead time for
development of systems in an academic environment, work
should not be discontinued to await release of the next
generation of bubbles. Instead, development should continue j
along the lines set down in this thesis, That 1is, any

redesign of the MBM peripheral should remain modular so that

new bubbles canm easily be interfaced once they become
available. Meanwhile, an IR can be developed with less than
a 1M byte capacity for reduced data acquisition tasks and to
prove the concept of the new generatiomn IR.

As stated previously, the IR Debugging Tool provides

only minimum front panel support for software development.
A recommendation for improving the front panel is to add
hardware breakpoints. Currently, the only way to insure that
the machine halts at a point of interest is to single step to
that point. As programs get longer, this becomes

increasingly tedious. Besides, single stepping interferes

with a program's interaction with interrupts.

Another lesson learned during software exercising of the
prototype is that programs burned into EEPROM's are
cumbersome to debug. This results from the fact that changes
can not be made to software during testing. Instead the

EEPROM must be reprogrammed and the test restarted for each

bug found. Developing a capability to replace EEPROM's with
RAM during software development would cure this problem.

Then programs loaded into the RAM could be altered during

89

testing through use of the IR Debugging Tool's memory write
capability. Relying on the fact that HNVM3008's have an
industry standard pin-out should minimize disruption of IR
prototype hardware.

Currently, EEPROM's must be removed from the IR whenever
reprogramming is desired. Future designs should incorporate
methods for programming the EEPROM's while they remain in the
IR, However, doing so should not add hardware to the IR
itself. The benefit of programming the EEPROM's without
removing them from the IR is that the possibility for system
errors is reduced. Errors are reduced in two ways. One is
that the possibility of misplacing IC's is eliminated. The
other is that permanent mechanical contacts have less chances
of loosening to cause unpredictable results.

Now that the IR prototype is nearing completion,
consideration should be given to other components of the
IFPDAS, As development continues, the answers to three
general questions become important. How will users develop
software for the IR? What field processing capabilities does
SAM need? How will SAM get the data from the field into
their laboratory data base? Until the IR can be integrated
into the IFPDAS, its use is restricted to proving feasibility

of design.

90

10.

11.

12.

13.

14,

Bibliography

Bell, Gordon C. and Allen Newell. Co puter Structures:
Readings and Examples. New York: cGraw-Hill Book
Company, 1971.

BPK-72 Bubble Memory Prototype Kit Users Manual, Santa
Clara, CA: Intel Corp, 1981.

CMOS Databook. Santa Clara, CA: National Semiconductor

Corp, 1978.

gggg onent Data Catalog. Santa Clara, CA: 1Intel Corp,
1980.

Electrical Research Association. The Engineering of
Microprocessor Systems. Oxford, England: Pe gamon

Press Ltd, 1979.

Fullager, David. "CMOS Comes of Age," IEEE Spectrum,
17:24-7 (December 1980).

F264 - 65.536x]1 Dynamic Serial Memory. Product

Specification. Mountain View, CA: Fairchild Camera and
Instrument Corp, October 1980,

Hall, Capt. and Lt. Shackford, IFPDAS point of contact
at SAM (personal interview)., Brooks AFB, TX, 5~6 May
1981,

Hall, Douglas V, Microprocessors and Digital Systems.
New York: McGraw-Hill Book Company, 1980.

Harris Digital Data Book, Volume 2. Melbourne, FL:
Harris Corp, 1981

Hill, Robert E, Aircrew Modularized Inflight Data
Acguisition System. MS Thesis. Wright-Patterson AFB,
Ohio: Air Force Institute of Technology, December 1978,

HNVM 3008, 8K CMOS EEPROM. Product Description. New~
port Beach, CA: Hughes Solid State Products, March
1981,

IC Master 1981, Volume 2. Garden city, NY: United

Technical Publxcatxons, Inc, 1981.

IC Memories. San Jose, CA: Hitachi America Ltd, 1980.
91

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Intel 7220-1, Bubble Memory Controller. Product

Description, Santa Clara, CA: Intel Corp, 1981,

Jolda, Joseph G, and Stephen J Wanzek. Aircrew Inflight

Physiological Data Acquisition System II. MS Thesis.
Wright-Patterson AFB, Ohio: Air Force Institute of
Technology, December 1977,

Magnetic Bubble Storage Data Catalog. Santa Clara, CA:
Intel Corp, February 1981,

Mano, M Morris, Digital Logic and Computer Design.,
Englewood Cliffs, NJ: Prentiss-Hall, Inc, 1979.

"Microcomputer Data Manual," Electronic Design, 29: 88-
99 (March 19, 1981).

"Microprocessor Data Manual," Electronic Design, 28:
107-208 (November 22, 1980).

Moore, Kenneth L. Aircrew Inflight Physiological Data

Acquisition System, MS Thesis., Wright-Patterson AFB,
Ohio: Air Force Institute of Technology, June 1980.

MCl146805E2. Product Specification. Austin, TX:
Motorola Semiconductor Products Inc, 1980.

Nassi, I, and B, Shneiderman., "Flowchart Techniques for
Structured Programming," ACM SIGPLAN Notices, 8: 12-26
(August 1973).

NSC800 Microprocessor Family Handbook. Santa Clara, CA:
National Semiconductor Corp, 1981.

Ramndanes, Carol, Marketing Representative, Non-
Volative Memory Division, Intel Corporation (personal
interview). Santa Clara, CA, 24 February 1982.

RCA COS/MOS Memories, Microprocessors, and Support
Systems, Somerville, NJ: RCA Corp, 1979.

Texas Instruments IC Applications Staff. Designing With
TTL Integrated Circuits, edited by Robert L Morris and
John R Miller. New York: McGraw-Hill Book Company,
1971.

ITL Data Book (Second Edition). Dallas TX: Texas
Instruments Inc, 1976.

Twaddle, William. "Special Report: CMOS IC's", EDN, 26:
88-100 (June 24, 1981).

Zaks, Rodnay. Microprocessors, from Chips to Systems.
USA: Sybex Inc, 1980.

92

ekl

Appendix A

IR Prototype Schematic

This appendix contains the schematic diagram of the IR
prototype. Instead of using a one page foldout, the
schematic is broken into logical pieces and distributed over
five pages. To combine the pages, lines ending at the right-
hand margin of one page are continued at the left margin of

the next page.

93

94

-5
oy aND
GND- a0
ook — R L 0 noon

" ie Y) -
o 2 (3 pyioed
r
AR
i
-.ag—-' — |
r FY ! \ﬁ._—q !
A, A BAJJ pad -
A, r"f‘z”i{?
- LMZAM I i !
L - ‘
e (L tTwr asdlIT i
N IV oo L
of _l“ 1
. y DI
L\Z/'\‘, . Mg T 2 ang'u I 3 3
N R 1 4 [zor=ze— -
Nt 7 iT — T
\-—jﬁ N | !
N R = = | memes |
Y L
E 2so. 8 Jost—— 3 L Limay
AE ; —
t fo xalN 1
Vi s] T suwa
Svrlactda TESETTAT A
N\ k] .M.,)
Ltz —1
AN/ }
7% E E{E;SUT |' 2 j
:v;;)\, AG L —_—
INSIH
x
NV \
24
2 f C* on
e] alil
X - m
o_ et
L
Vea mﬁi}J
[
Figure 12, IR Prototype Schematic (page 1 of 5).

NO
CNTRL
Apom

N

da

1
122 >:1I

':b"

Zlad

’ ! jd]
38 e~ —3
S 3
£ - ﬂ.!._ooa °
sE* ~—~ 9553 J
T X N M
14 LIL
NS g .
) x
e
u«umlv_.lw H uwn H HM
m LI , . odom
g ——of3
Tt R
)

L1101l

-5

GMND.

IR Prototype Schematic (page 2 of 5).

Figure 12,

AAm

95

Mot . e

<)
ND

200%
arm

- T Tt T oo T e g T .i!lJ

-
w
o
o
o
o0
o
a.
=0 Q T ¥ e
JaRSl,--2 o
~0 MA m:w.ﬂ: ° ..mm alt ,/159 m
S T "g° - —2eud o
S | il :
a
Taaeaete £ ~ s _ awuu
”) . 120}) ©
, [, o a
HHHHE HHHHH HH >
y_]3=——~hKR %mwllf‘lﬁ b3 4 %%anl \I||I|!|!.!o»1\ -n.v.
25 B mom . =5 X owom 2 ~f! maaw . °
3—— ~ 5] [5-— B3] T [saz-aine k
) - Uﬂb_u— ~ TFIF] H.u 'IF .
S N . R R) . -
’ — \\t\\t lL.f.lLtL ~
= - —
~ —_ —
= - @
e
_ 3
00
i3 e b X s

37

§ s rgre
\y 00 vea
N\ - ST b
N 1L X3 -y
z 0 WS
\ . ar /a —_—
A s 7 jL_V
\ } =
NG
NI
INZ N3 -
S L < ANS P
Figure 12. IR Prototype Schematic (page 4 of 5).

5
[~
P e m— Y
W—————W
10
26
08,
Ol
i
e g |
N
% g [T
B (S
1
L
LAY
.ot
9 | ue
t ooac‘: n
. 2 2i
=)
E 8
LA
k jjm
Tiox
.7,
‘_.
MMy
!
—
%
Figure 12, IR Prototype Schematic (page 5 of 5).

98

Appendix B

EEPROM Programmer

Contents
I. Introduction e o 4 s s+ s e e e e s e e e e 4 o e o 100
II. Schematic Diagram . . « « o & ¢ ¢ o « o« o s « « « o 101

TII. Software .« & v o « o o ¢ o o o &« s o o o o o o o« 108

IV, User's Manual . . . « ¢ ¢ « + o « o o o o« o« « o« o« o« 147

System Start-up e e e & 4 s e a4 s e s 4 4 e o« o o« las
Commands e XY
ERASE & 4. ¢ ¢ ¢ o o « o o o o o o o o « o &« « 149
PROGRAM . . ¢ & ¢« ¢ o o o o o o o o o s o« + « 149
VERIFY o« & &« ¢ ¢ o o o o o o o o o o« o o o o« « 151
DUMP . ¢« v ¢« & &+ o o o o o o o o o o o o o« o « 153
Errors e e e e e o e s e e e e e e e s e e e e e & 154

99

EEPROM Programmer

I. Introduction

This Appendix describes and documents operation of the

EEPROM Programmer designed to support Hughes Solid-state
Products HNVM 3008 EEPROM's. Documentation consists of a
schematic diagram and an associated software listing.
Following the software listing is a user's manual which
describes the Programmer's capabilities and summarizes its
operating procedures, Another important source of informa-
tion, the HNVM 3008 data sheet, is located in Appendix E.

The EEPROM Programmer described in this document is a
flexible tool £for supporting HNVM 3008 EEPROM's. This
flexibility results from two design considerations. One 1is
that the hardware is based on the S$S-100 bus. Another is that
software runs under control of the Cromemco Disk Operating
System (CDOS) and consequently the Control Program for
Microprocessors (CPM) Operating System. Further explanations
of these design decisions are contained in the following

sections of this document.

100 i

W —

IT. Schematic Diagram

The hardware used to implement the Programmer 1is
illustrated in the schematic diagram of Figure 12, To
facilitate understanding of the schematic, Table XI lists the
functions of the IC's used to construct the Programmer. More
detailed information on individual IC's is available from The

TTL Data Book and The Intel Component Data Catalog (Refs 1l1;

4).

The Programmer is wirewrapped on a Cromemco Z-2D
prototyping card, and therefore, can be easily transported to
any S-100 based system. Table XII illustrates which §-100
pins are used by the Programmer, Since the interface to the
$-100 bus is fully buffered, each line in Table XII presents
only a single TTL load to the bus.

Another aid to transportability is the onboard switch
selection of the five most significant bits of the Programmer
port addresses. This allows Programmer hardware addresses to
be chosen which do not interfere with the permanent I/0
addresses of the host computer. The EEPROM Programmer
addresses are selected by opening and closing appropriate
switches. Closed switches indicate zero bit settings, and
open switches indicate ones. The most significant bit of the
address switches is plainly marked on the wire-wrap card.
Beware that changes to these address switches require that

corresponding changes be made to Programmer software.

101

PO

TABLE X

EEPROM Programmer Selectable Ports

Port Address Function
BBBB B0O0O EEPROM Data Bus
BBBB BOO1 EEPROM Address LSB(yte)
BBBB BO1l0O EEPROM Address MSB(yte)
BBBB BO1l1l I1/0 Command/Status
BBBB B100 EEPROM Control Bus

- e T - D - - D D e — S — S - S D = n A= A S -

Table X lists the EEPROM Programmer ports which are
affected by hardware address settings. The three least
significant bits, denoted by B's in Table X, are switch
selectable, allowing 32 choices for port addresses. One
possible selection is 00110, yielding software addresses 30H
through 34H. Switch settings to coordinate these addresses
with the hardware are - from the most significant bit -
closed, closed, open, open, and closed.

The only other requirement for EEPROM Programmer
operation is the need for an extermnal 20V power supply.
This power source is regulated on the Programmer card to
provide either 5V or 17V to the positive supply terminal of
the EEPROM. Switching between the two volatges is governed by

software,

An important note with reference to the HNVM 3008 is
that proper programming depends on a continuous voltage to
the positive supply pin of the EEPROM. Output from the
regulator which supplies EEPROM power must not go to ground
during voltage transitions between 5V and 17V. The LM317 and
its associated circuitry provides these continuous power
transistions. Consequently, voltage changes from 5V to 17V
and from 17V to 5V, produce output waveforms that are step

functions.

103 f

TABLE XI

EEPROM Programmer IC Listing

s e - - A - . - e R G - R WS W M EE S D me G @S @ e W W e

Device Functional Schematic
Type Designation Reference
74365 Hex Bus Drivers Uul,u2]
8216 4-bit Bidirectional)
Bus Driver U3,u4 A
7404 Hex Inverters U5 i
74156 3-to-8 Line Decoder Ué
7485 4-bit Magnitude Comparator U7,08 A
7400 Quad 2-input NAND Cates U1z
8255 Programmable Peripheral
Interface Ulil

8212 8-bit 1/0 Port Ul3

- —— - —— > - ———— = e - - - e = AL YA e WS o e e v

TABLE XII

$-100 to EEPROM Programmer Interface Definition

- e e TR G S SR Y N R SR R e G S e S S R G S G G e e e S G e M S G S S e e -

§-100 Signal $-100 Signal
Pin Function Pin Function 1
29 Addr 5 75 RESET
30 Addr 4 79 Addr 0
31 Addr 3 80 Addr 1
35 Data Qut 1 81 Addr 2
36 Data Out 0 82 Addr 6
38 Data Out 4 83 Addr 7
39 Data Out 5 88 Data Out 2
40 Data Out 6 89 Data Out 3
41 Data In 2 90 Data Out 7
42 Data In 3 91 Data In 4
43 Data In 7 92 Data In 5
45 ouT 93 Data In 6
46 INP 94 Data In 1
50 GND 95 Data In O
51 +8V

105

e e T |
2D D= G ND

w—ouT U

o) (D ”]%‘0

=iy 12
T RESE e US
I
X
o
30 .
s— I
YR ! N
200 | e} L
o= |
25—
33)—67.__/] i
——tENL —2i87 S ;
i e, awr'- Vs n'——l i
—_—) S N L ;
— . ||
» - | I
00 / ? :3 J:i | !
—wr— 000 - SND g B aND
30— | § Los A | s ‘
3B 0 Sose 4 T O |
.;a)_{‘ Nt /RS Sl < J
28> N JLC7Q = A W i Z 74
A= - J_ o< L < giN«<z .
10 e | wR N 835 s ;
N 007 we DSt Vae A3 -—J- !
. |

{
-0
—d
|
¥
@
N S

7§ e0IC e
793 | Nt 02§ A2 amamam S
YRS =Y p) 107 < /1 i
1 | r l —t~ @ 3 i R
s ma” = |
- o] v LiQ
I | L 5)1_ DO{ %
23— | W r—
43>—qr7 . e O3HL s 3

3 -) % %)

Figure 13. EEPROM Programmer Schematic (page 1 of 2).

106

. baa et

< r
"z
—* " T
— L
' 8 o Y
A o=
1 - I 3 ‘mg ﬂ \ /_ J- —
w3 e =
NS5 ro N ’ —
Nt D6 <(?C‘ [P,
gg‘r y'é([q'g_7
\—{ 5753 \PC7 2D ———
M D2 A0 2 —/ 51 —
N D! ﬂ’iln - PR —
jolo} ND = LAY/} p—
X Py a0 = , P_———- | I—
{1 i
{ | - ;'; —_—
MRY>N M3 - oy
NiC @
l oz —
> . LS v |
' AQ
L L i
— N7 pu—
X
| of
SROGARAMMER
——— N 05
I
\ Mt P N2 0
|| GEa
L | z40m|
13 Y 71 H :.:’MF
‘f‘.’i Jl’sv:rai’r T e 1 .wzil
6N 3 034 e | e |
Mﬁ'f T D2 d | , l
- - ..‘Oo
y—u‘dﬁf <0y el L si i
2¥F ool l I S R
el X
Figure 13. EEPROM Programmer Schematic (page 2 of 2).

107

I1II. Software

Figure 15 is a software listing of the program used to
drive the EEPROM Programmer hardware. Its basic flow is
outlined in the Nassi-Shneiderman chart (Ref 23) of Figure
14. The software was written in Z-80 assembler language with
system calls to CDOS for I/O support. Since system calls are
restricted to those between 1 and 27, the software is
transportable to CPM based systems without modification.
This transportability results from identical execution of the

operating systems for calls in the range of 1 to 27.

108

INITIALIZATION

GET USER COMMAND

WHILE COMMAND NOT EXIT DO

COMMAND
ERASE PROGRAM VERIFY DUMP
ERASIC CRE8SFCB CRE8SFCB CRE8S$FCB
OPEN FILE OPEN FILE CREATE FILE
WHILE NOT WHILE NOT RDSIC
EOF DO EOF DO
WRSFIL
ERASIC RDSFIL
DO UNTIL
RDSFIL VERSIC LAST IC
PROGSIC CLOSE FILE CLOSE FILE
VERSIC
CLOSE FILE

Figure 14,

EEPROM Programmer Flowchart

MACRO-80 3.36 17-Mar-80 PAGE i-1
280
+COMMENT %

sAUTHOR: CAPT R E MEISNER

sDATE: 25 AUG 81

35YSTEM: CROMEMCO Z2D (4 MHZ) / CDOS 2.3%

sDESCRIPTION: THIS ROUTINE SUPPORTS HUGHES HNVUM 3008 EEPROM‘S BY

3 PROVIDING THE FOLLOWING OPERATIONS:

H ERASE - ERASE AN IC,

3 PROGRAM - DUMP A FILE TO IC(9),

3 VERIFY - INSURE FILE AND IC(S) DATA MATCH, AND
H puMP - DuMP IC(S) 10 A FILE.

sOPERATION:

THIS PROGRAM I5 EXECUTED BY RUNNING "EEPROM“ FROM THE CDOS
MACHINE LEVEL. ONCE INITIATED, EEPROM WILL GUIDE THE USER
THROUGH OPERATION OF THE PROGRAM WITH APPROPRIATE CONSOLE

DIRECTIVES., WHEN DONE, THE USER CAMN EXIT GRACEFULLY BACK

T0 THE CDOS LEVEL.

%xx#x EEPROM PORT REQUIREMENTS *xxxx

PORT ADDRESSES ARE SWITCH SELECTABLE BY SETTING THE HIGH ORDER
5 BITS OF THE POKT ADDRESS ON THE PROGRAMMER EOARD. THE LOWER
3 BITS HAVE THE FOLLOWING DEFINITIONS:
0 - EEPROM DATA RUS
EEPROM ADDRESS LSB{(YTE)
EEPROM ADDRESS MSB{(YTE)
8255 COMMAND/STATUS PORT
EEPROM CONTROL BUS

B LI NI -
[.

sxx%x CEPRON CONTROL LINE DEFINITIONS swnxx

07 - N/A
D4 - N/A
D5 - N/A
D4 - N/A
D3 - VDD CONTROL (0 = 17V, 1 = 5\

D2 - CE (ACTIVE LOW)
D1 - OE (ACTIVE LOW)
D0 - CS (ACTIVE HIGH)
b4
PAGE

Figure 1S, EEFROM Programmer Software {(page 1 of 37),

110

0000°

0100
0100
0104
0107
010A
014a
0144

MACRO-80 3.36

ED 73 014A
31 014A
€3 0Ds0

0000

Figure 15.

17 -Mar-80

PAGE 1-2

+COMMENT %

ENTRY

STACK
0LDSP
PAGE

PEI'TY 23 TUST RS BTSSR BX B 2% 2% ST ET B BT XYY 2Y 2
#-%-% NOTE TO MAINTENANCE PROGRAMMERS ®-%-%
28 B O 2% o S B X BT ST ETETEL 2T ST EE Y 2 2 A 2%

SEVERAL SUBROUTINES IN THIS PROGRAM CONTAIN TINE SENSITIVE
INSTRUCTION SEQUENCES. CONSULT THE HUGHES SOLID STATE PRODUCTS
HNVM 3008 DATA SHEET BEFORE MAXING CHANGES. THE CRITICAL
SUBROUTINES ARE:

ERASIC, IC$RD, AND PROGSIC.

OTHER SUBROUTINES CAN BE FREELY BE CHANGED WITHOUT AFFECTING
TINING REQUIREMENTS,

ALS0, THROUGHOUT THIS PROGRAM THE ASSUMFTION IS MADE THAT THE
EEPROM SUPPLY VOLTAGE IS NORMALLY SET AT SV, IT IS ONLY
INCREASED TO 17V WHEN REGUIRED FOR ERASING OK PROGRAMMING.

ASEG
ORG 0100H
$PT:
LD {0LDSP),SP 3SAVE OLD STACK POINTER
LD SP,STACK JINITIALIZE NEW STACK
JP START
DS 44 364 BYTE STACK
EQU $ sTOP OF STACK
T 0 ;OLD STACK POINTER SAVE AREA

EEPROM Programmer Software (page 2 of 37).

i

MACRG-80 3.36 17-Mar-80 PAGE -3

ST CONSTANTS 63636 96 96 06 96 96 36 36 36 96 36 98 36 98 36 6 36 4 6 966 36 96 3¢ 36 96 36 36 96 3¢ 3¢ 3¢ 98 0

FFFF NEG1 EQU -1

0000 ZERO EQU

0001 ONE EQU 1

0010 MAXERR EQU 16 s#Ee MAXIHUM NUMBER OF VERIFY wnx
s#%% ERRORS THAT WILL BE DISPLAYED #xx

0080 RECSIZ EQU 128 sRECORD SIZE = DISK SECTOR SIZE

0008 BF EQU 8 y*%% BLOCKING FACTOR FOR 1K ®#x

y¥#% (BF # RECSIZ = 1024) w»»

$ASCII CHARACTERS

0020 BLANK EQU

0034 COLON EQU b
002E PERIOD EGU e
002F SLASH EQU A

3CDOS SYSTEM CALL PARAMETERS

0005 Cbos EQU 0005H yCDOS ENTRY POINT

0001 RDCHR EGU 1 sREAD A CHARACTER FROM CONSOLE

0002 PRTCHR EQU 2 {FRINT A CHARACTER ON THE CONSOE

0009 PRTLN EQU 9 3PRINT BUFFER LINE ON CONSOLE

0004 RDLN EQU 10 yINPUT BUFFER LINE FRON CONSOLE

0024 PRTEND EQU $ 3END PRINT BUFFER

000F OPNFL EQU 15 $OPEN DISK FILE

0010 CLSFL EQU 16 jCLOSE DISK FILE

0014 RDFIL EQU 20 yREAD A DISK SECTOR

0015 WRFIL EQU 21 JWRITE A DISK SECTOR

0015 CReFL EQU 22 ;CREATE A DISK FILE

0019 CURDK EQU 25 3GET CURRENT DISK INDICATOR

005C FCB EQU 05CH ;BEGINNING OF FILE CONTROL RLOCK

0080 CDOS$DB EQU 080H sDEFAULT DISK BUFFER ADDRESS
yeseen FILE CONTROL BLOCK DESCRIPTION #awawss

005C FCBDXK EQU FCB+0 3DISK DESCRIPTOR ¥

005D FCBFN EQU FCB+l sFILE NAME *

0045 FCBFT EQU FCB+9 sFILE TYPE ¥

0068 FCBEX EQU FCB+12 sFILE EXTENT *

0068 FCBRC EQU FCB+15 $RECORD COUNT ¥

006C FCBMP EQU FCB+16 sCLUSTER ALLOCATION MAP *

007C FCBNR EQU FCB+32 sNEXT RECORD *

;**l**!*lll!***ii****'*****li***********ﬁl*&*l

Fiqure 15. EEPROM Programser Software (page 3 of 37).

112

MACRO-80 3.36 17-Mar-80 PAGE 1-4

;CARRAIGE CONTROL

000D CR EQu 00DH $ASCIT CARRAIGE RETURN
000A LF EGU 00AH 3ASCIT LINE FEED

3170 PORT ADDRESSES

0001 c10 EQU 001K sCONSOLE 1/0 PORT

0020 PROMA EQU 020H sEEPRON DATA PORT

0021 PROME EQU 021H sEEPROM ADDRESS LSE

0022 PRONC EQU 0224 ;EEPROM ADDRESS HSB

0023 PCNTRL EGU 0234 ;PERIPHERAL CONTROLLER PORT FDR PORTS A, B, C
0024 PROND EOU 024H ;EEPROM CONTROL PORT

;CHANNEL COMMAND WORDS FOR FPROGRANMING THE PERIPHERAL CONTROLLER

0080 COV1 EQU 100000008 {PORTS A, B, C = LATCHED QUTPUT
0090 CCW2 EQU 100100008 s#%% PORTS B, C = LATCHED OUTPUT wxx
% PORT A = INPUT vex

;EEPROM CONTROL LINES AS DEFINED FOR PORT D

0008 Vs5 EQU 008K 1%% SUPPLY *« 5V *x

00F7 Vs17 Eau OFFH-V$5 ;%% VOLTAGE »*» LI VAR L

0004 D$CE EQU 004H jeek CHIP %xx x# DISABLE
00FB B$CE EQU OFFH-D$CE s*%% ENABLE *x% #% ENABLE #»
0002 D$OE EQU 002H 1%% DUTPUT »# #% DISABLE #»
00FD ESCE EQU OFFH-D$0E 3#% ENABLE *% ENABLE #»
0001 E$CS EQU 001H sexe CHIP xex %% ENABLE #«
00FE D$CS EQU OFFH-E$CS yae% SELECT wwx #% DISABLE #»

sCONSOLE MESSAGES

014C 0D OA 0A WSGl: DB CR,LF,LF
014F 20 20 20 20 DB * " WHAT OPERATION DO YOU WISH 1O PERFORM?*,CR,LP
0178 4528 52 29 DB *E(R)ASE, (P)ROGRAN, (V)ERIFY, (D)UMP, OR ECX)IT’

01AA 0D 0A 24 DB CR,LF,PRTEND

01AD 0D 0A SC2: D2 CR,LF

01AF 46 49 4C 45 DB 'FILENAME? *,PRTEND

018B 0D 0A 0A MSG3: DB CR,LF,LF

01BE 50 4C 45 41 DB 'PLEASE ANSWER THE FOLLOMING QUESTIONS IN HEXIDECIMAL'
01F2 0D OA 4E 4F DB CR,LF, NOTE: THE FIRST 2 ADDRESSES MUST BE ON *

021C 4B 49 4C 4F DB *XILOBYTE BOUNDARIES' ,CR,LF,LF

0232 53 54 41 52 DB *STARTING ADDRESS OF PROGRAM ON FILE? °,PRTEND

Figure 15, EEPROM Programmer Software (page 4 of 37),

113

MACRO-80 3.36 17-Mar-80 PAGE 1-6
0259 0D 0A 46 49 MSG4: DB CR,LF, FIRST ADDRESS TO BE PROGRAMMED/VERIFIED?
0285 24 DB PRTEND
0286 0D 0A 4C 41 MSG5: DB CR,LF, LAST ADDRESS TD BE PROGRAMMED/VERIFIED?
02B1 24 0B PRTEND
02B2 0D 0A 04 MSGé: DB CR,LF,LF
02B5 52 45 4D 4F DR ‘REMGVE OLD IC / INSERT NEXT IC’,CR,LF,LF
0206 50 52 45 53 DB "PRESS ANY KEY WHEN READY',CR,LF,LF,PRTEND
02F2 0D OA 44 4F NSG7: DB CR,LF, DO YOU HAVE MORE EEPRONS? (Y/N)',PRTEND
0314 0D OA 56 45 NSG8: DB CR,LF, VERIFICATION COMPLETED WITH NO ERRORS’ ,PRTEND
033C 0D 0a NSGERA: DB CR,LF
033 4552 41 53 DB "ERASING" ,PRTEND
0346 2D 50 52 4F MSGPRG: DB ' -PROGRAMNING® ,PRTEND
0353 2D 56 45 52 MSGVER: DB ' -VERIFYING' ,CR,LF,PRTEND
0360 0D OA 24 2A ERRi: DB CR,LF, s#x ERROR ##»x FILE NOT FOUND',CR,LF,PRTEND
0381 0D 0A 2R 2A ERR2: DB €R,LF, %% ERROR %% PROM DID NOT ERASE',CR,LF,PRTEND
03a6 0D 0A 24 24 ERR3: DB CR,LF, #%» ERROR #»* FILE COULD NOT BE CREATED’
O3CF 0D 0A 24 DB CR,LF,PRTEND
0302 2A 2A 24 20 ERR4$0: DB ‘##% VERIFY ERROR - PROM FILE/PROM’,CR,LF
03F8 2A 2A 2R 20 DB g1l ADDRESS VALUES' ,CR,LF,PRTEND
O41E 2A 2A 24 20 ERR4$1: DB AR " (PRTEND
0434 20 2F 20 24 ERR4$2: DB "/ " ,PRTEND
0438 0D 0A 24 24 ERRS: DB CR,LF, %%% ERROR #»% DISK RECORD COULD NOT BE WRITTEN’
0468 0D 0A 24 DB CR,LF ,PRTEND
046B 0D 0A 24 24 ERRS: DB CR,LF, %%» ERROR %% RELATIVE MAGNITUDE OF ADDRESSES '
049B 49 53 20 49 DB ‘1S INVALID® ,CR,LF,PRTEND
04A8 OD OA 2A 24 ERR7: DB CR,LF, #%# ERROR %% INVALID ADDRESS’,CR,LF,PRTEND
04CA 0D 0A 24 24 ERR8: DB CR,LF, *%*% ERROR w#% DISK FILE READ ERROR OR °
04F2 35 4E 45 58 DB "UNEXPECTED EOF’ ,CR,LF,PRTEND

JEeRERREN xR0 END CONSTANTS 06963636 3696 363600 360606 06 36 36 9696 06 6 36 30 06 96 96966 3696 36 96 3696 96 6 36 36 3¢ %

Figure 15, EEPROM Prograsmer Softmare (page 5 of 37).

114

RACRO-80 3.36 17-Har-80 PAGE 1-10

Hi SHREECHEOOEEES VARTABLES SMOHHEHOHEHHEHEHHHE O HHHE R
0503 NXTADD: DS 2 $NEXT EEPROM ADDR TO BE PROGRAMMED
0505 FLSTAD: DS 2 $STARTING ADDR OF FROGRAM ON THE FILE
0507 FSTADD: DS 2 yFIRST EEPROM ADDR TQ BE PROGRAMMED
0509 LSTADD: DS 2 ;LAST EEPROM ADDR TO BE PROGRAMMED
0508 ERRADD: DS 2 3SAVE AREA FOR AN ERROR ADDR
0500 01 ERRCNT: DB 1 yTEMPORARY ERROR COUNTER
050E 50 CONBUF: DB 80 3BUFFER LENGTH
050F 00 DB 0 yNUMBER OF CHARACTERS READ
0510 DS 80 ;CONSOLE INPUT BUFFER
0560 DSKBUF: DS BF*RECSIZ 3DISK BUFFER - HOLDS 'BF* RECORDS
0950 PROMBF: DS 1024 ;EEPROM BUFFER - HOLDS EEPROM IMAGE

s EtNEE END VARTABLES 1691 SIS0 JE 00000 6000 M 636063 M
PAGE

Figqure 15. EEPRON Programser Software (page 4 of 37), i

115

|

MACRO-80 3,36 17-Nar-80 PAGE -1
]

0D&0 3E OF START: LD A,V85+DSCE+DSOE ;xx* DISABLE EEPRON wux
0062 D3 24 outr (PROMDY A yi#" CONTROL LINES e]
0D64 GETSOFR:
0D64 OE 09 LD C,PRTLN SEEEEREEEEERERER
0Dé6 11 014C LD DE,MSG1 3% PROMPT USER FOR OPERATION
0Ds9 CD 0003 CALL CDOS R R EE R R RN
0DéC OE 01 LD C,RDCHR y#u% GET USER s#xx
0DSE CD 0005 CALL CDOs j*u#t KESPONSE *x#
0071 FE 52 ce R
0073 Ca 0D90 JP Z,E$0PR 360 ERASE
0D76 FE 50 ce ‘P
0078 CA 0DA3 JpP Z,P$0PR ;G0 PROGRAN
0D7B FE 56 ce v
007D €A OE18 JP Z,V$0PR 360 VERIFY
0080 FE 44 ‘ ce "y
0082 CA OEBE JpP Z,D$0PR 36O Dump
0085 FE 58 ce X’ 1EXIT?
0D87 20 DB JR NZ,GET$0PR N0, INVALID INPUT
0D89 ED 7B 014A LD SP,(0LDSP) $YES, RESTORE STACK
0D8D C3 0000 Jp 0 3 RETURN TO CDOS

yeeeree ERASE IC MHMetHOnHHHH BRI R R R

0090 OE 09 E$OPR: LD C,PRTLN 3% INSTRUCT USER s*x

0D92 11 02B2 LD DE,MSG4 yeex TO TURN ON #%x

0095 CD 0005 CALL CDOS y¥x% PROGRAMMER wxx

0098 OE 01 LD C,RDCHR 3wk WAIT UNTIL sxxx

009A CD 0005 CALL CDOS jeexe DONE %xxx

0090 CD 1131 CALL ERASIC

0Da0 C3 0D&0 JP STAKRT sALLOW USER ANOTHER OFERATION

PAGE

Fiqure 15. EEPRON Programmer Software {(page 7 of 37).

114

0DA3

0DAS
0DA8
0DAB

ODAE
0DBO
00B3
0DBS
0D88
0DBB

0DBE
0DC!
0DC3

00Cs
0DCy
00CB

00CD
0DDo
0DD2

0DD4
0DDé
0Dp?

0DDC
0DDE

0DEL
ODE4
ODES

0DES
0DEB

ODEE
0DFO0

MACRO-80 3.36

CD 0F01

OE OF
11 005C
CD 0005

FE FF
€2 0DBE
OE 09
11 0360
€D 7005
C3 0D40

CD OF4E
FE FF
CA OEOD

€D 108D
FE FF
28 40

CD 10FF
FE 00
20 3

0E 09
11 0282
CD 0005

0E 01
CD 0005

£h 1131
FE 00
20 25

Ch 11B4
CD 120F

FE FF
28 1B

17 -Har-80 PAGE

seunnnx ERASE,

P$OPR: CALL

LD
LD
CALL

cpP
JP
LD
LD
CalL
JP

P4Cl: CALL
ce
JP

CALL
cp
JR

1-12

CRE8$FCB

C,0PWFL
DE,FCB
£DO0S

NEG1
NZ,P$C1
C,PRTLN
DE,ERK1
€00S
START

SET$SADDR
NEG!
Z,P$DN

POSSFIL
NEG1
7,P$DN

PROGRAM, R VERIFY IC 3633 MMEIHEN I MM 1000 B NN R

[2R 2K K 3K 3K 3K BN 2% 2N]

3
3# OPEN DISK FILE *
TEEE K K KR KK E

sWAS OPEN SUCCESSFUL?
sYES

IND, ¥ % % % % % % ¥
% PRINT ERROR #
SEREERER

ALLOW USER ANOTHER TRY

ws e e

sADDR ENTRY ERROR?
;YES, ALLOW USER ANOTHER TRY

yFILE POSITIONING ERROR?
1YES, ALLOW USER ANOTHER TRY

s#%x LOOP UNTIL ALL IC'S ARE PROGRAMMED wx#

PSNI: CALL
cp
JR

LD
LD
CALL

LD
CALL

CALL
cp
JR

Ps$C2: CALL
CALL

ce
JR

RDSFIL
ZERQ
NZ,PSES

C,PRTLN
DE,MSC4
£D0S

C,RDCHR
Cpos

ERASIC
ZERQ
NZ,P$DN

PROGSIC
VER$IC

NEG1
1,P$DN

sWERE ANY RECORDS READ?.
sNO, MUST BE READ ERROR

youx INSTRUCT USER *ux
y%e® TO TURN ON *ex
yiex PROGRAMMER sun

st WALT UNTIL snxn

JEERR DONE ER%H

:WAS ERASE SUCCESSFUL?
sNO, GO CLOSE FILE AND GET QUT

{WERE THERE PROGRAMMING ERRORS?
sYES, GO CLOSE FILE AND GET OUT

Fiqure 15, EEPROM Pragramser Software (page 8 of 37).

117

~y

MACRO-80 3.36 17-Mar-80 PAGE 1-13

0DF2 ED 4B 0503 LD BC, (NXTADD) HEESEEEENENEN

ODFé 51 LD b,C 3# LOAD DE WITH NXTADD *

0DF7 58 LD E,B IHOE K KK EE X KK KX :
ODF8 ED 4B 0509 LD BC, (LSTADD) IR RN NN |
ODFC 41 LD H,C 3% LOAD HL WITH LSTADD »
ODFD 48 LD L,B TEEEREEEE R RN KR !
ODFE A7 AND A SN COMPUTE i

ODFF ED 52 SBC HL,DE s#a% LSTADD - NXTADD *xx i
0E01 38 0A JR C,P$DN 3¢0 IMPLIES DONE '
0E03 13 C8 Jr PSNI 37=0 IMPLIES NOT DONE

;##% END LOOP wwx

0E05 OE 09 P$E8: LD C,PRTLN TR E R R R R R R R R

0E07 1f 04CA LD DE ,ERR8 3* PRINT DISK READ ERROR #

0E0A €D 0005 CALL CDOS SEREEEREREEEEER

OEOD OE 10 P$DN: LD C,CLSFL HERE XXX REE N 3
OEOF 11 005C LD DE,FCB 3% CLOSE DISK FILE # }
0E12 CD 0005 CALL CDOS HEEEEE R XN R X o)
0E15 €3 0D&0 Je START JALLOW USER ANOTHER OPERATION

PAGE

Figure 15, EEPROM Programmer Software (page 9 of 37).

118

P——-—-———-———————————"——"

MACRQ-80 3.36 17-Mar-80 PAGE 1-14

3ER% UERIFY IC J6000006 00000 M0 I 36 0000006060 U006 D030 0000 J I

0E18 €D oOFO1 V$0PR: CALL CRESS$FCB

0E1B OE OF LD C,0PNFL HERE RN W

OE1D 11 005€C LD DE,FCB ;* OPEN DISK FILE »

0E20 €D 0005 CALL CDOS KR KK KR KK 3

0E23 FE FF cP NEG1 sWAS OPEN SUCCESSFUL?

0E25 20 0B JR NZ,Vs$C1 JYES

0E27 OE 09 LD C,PRTLN NO, * % % % % ¥ % %

0E29 11 0360 LD DE,ERR1 3 % PRINT EKROR #

0E2C CD 0005 CALL €DOS SRR EEEE S

OE2F (3 0D&0 Je START JALLOW USER ANOTHER TRY

0E32 CD OF4E VsCl: CALL SET$ADDR 7

OE35 FE FF cp NEG1 JADDR ENTRY ERROK? '

0E37 CA OE83 JF Z,V$DN 3YES, ALLOW USER ANOTHER TRY 1
.

0E3A CD 10BD CALL POSSFIL

0E3D FE FF cp NEG1 sFILE POSITIONING ERROR?

OE3F 28 42 JR Z,VSDN 3YES, ALLOW USER ANDTHER TRY

s##% LOOP UNTIL ALL IC'S ARE VERIFIED ##x

0E41 Ch 10FF USNI: CALL RDSFIL

OE44 FE 00 ce ZERO sWERE ANY RECORDS READ?

0E46 20 33 JR NZ,VS$ES sNO, MUST BE DISK READ ERROR
0E48 OE 09 LD C,PRTLN j*%% INSTRUCT USER #xx

OE4A 11 02B2 LD DE,NSG4 sex TO TURN ON *xx

0E4D CD 0005 CALL CDOS yHe% PROGRAMMER wxx

0ES0 0E 0! LD C,RDCHR yHeex YAIT UNTIL wexs

0ES2 CD 0005 CALL CDOS jeexk DONE wxwx

0ESS OE 02 LD C,PRTCHR HEEEEERSR

0ES7 1E 0D LD E,CR 3# MOVE CURSOR *

0ES? CD 0005 CALL CDOS i TO NEXT *

0ESC 1E 0A LD E,LF i+ LINE *

0ESE CD 0005 CALL CDOS HEEE R RN

0E61 CD 120F CALL VERS$IC

0E64 FE FF cp NEG1 sWERE THERE PROGRAMMING ERRORS?
)13 28 1B JR 1,V$DN ;YES, GO CLOSE FILE AND GET OUT

Figure 15, EEPROM Programmer Software (page 10 of 37).

119

0E48
OESC
0E&D
OESE
0E72
0E73
0E74
0E75
0E77
0E79

0E7B
0E7D
0E80

0EA3
0E85
0E88
OE8B

MACRO-80 3,36 17-Mar-80 PAGE
ED 4B 0503 LD
b} LD
58 LD
ED 4B 050 LD
81 LD
58 LD
A7 AND
ED 52 SBC
38 0A JR
18 €6 JR

OE 09
11 04CA
€D 0005

0E 10

11 005C
€D 0005
€3 0D&0

s#x% END LOOP

V$EB: LD
LD
CALL

V$DN: LD
LD
CALL
Jr
PAGE

1-15

BC, (NXTADD)
D,C

E,B

BC, (LSTADD)
H,C

L,B

A

HL,DE

C, VDN

VNI

X%

C,PRTLN
DE,ERR8
cbas

C,CLSFL
DE,FCB
£hos
START

TR K KR K KKK K
3# LOAD DE WITH NXTADD
HEREEENEREN
SEREEEEREEE
3% LOAD HL WITH LSTADD
3
3
3
3
i

E . R . R 3

T EEEEEREREE
R COMPUTE 111
2% LSTADD - NXTADD xx»
0 IMPLIES DONE

=0 IMPLIES NOT DONE

~ A~ W

HE R R R R E R KR KR

3% PRINT DISK READ ERROR #
TEEEEEEREERER

¥ K K Ok K K K K K X X

x CLOSE DISK FILE *
ERERE KN L KR

*
ALLOW USER ANOTHER OPERATION

Figure 15, EEPROM Programmer Software (page 11 of 37).

120

[P

OESE

0E91
0E?3
0E96

0E99
0E9B
0E9D
OE9F
0EA2
OEAS

OEA8
0EAA
OEAD

0EBO
0EB2

QEBS

OEB8
0EBA

0EBD
OECO
0EC3

0ECS
0ECS
0EC8
OECH
OECE
0EDO
0ED2
0ED3
OED4

NACRO-80 3.36 17-Mar-80 PAGE 1-16
SO DURP IC M I I IO HEHE O I
Cd oFO1 D$OPR: CALL CREBSFCB
OE 16 LD C,CREFL OB K K R KKK KX K KK
11 005C LD DE,FCB 3# CREATE A DISK FILE »
CD 0005 CALL €DOS HEREREEEFEENNE
FE FF ce NEG1 sWAS CREATE SUCCESSFUL?
20 0B JR NZ,D$RA YES
OE 09 LD C,PRTLN tNO, % % % % % % % &
11 03aé LD DE ,ERR3 3 % PRINT ERROR #
CD 0005 CALL CDOS TR REEERRR
C3 0D JP START 3ALLOW USER ANOTHER TRY
;#%% LOOP UNTIL ALL IC'S ARE DUMPED wxx
OE 09 D$kA: LD C,PRTLN s#%% INSTRUCT USER #xx
11 0282 LD DE,NSG4 j¥%% TO TURN ON %xx
€D 0005 CALL €DOS ye%% PROGRAMMER ssxx
0E 01 LD € ,RDCHR y4%% WAIT UNTIL »xx
£D 0005 CALL CDOS je% DONE xx
CD 1182 CALL ICSRD
3E 08 LD A,BF sINIT * LOOP COUNTER
21 0960 LD HL,PROMBF 3 # PROMBF PNTR
s#e% LOOP UNTIL PROMBF IS WRITTEN ##x
11 0080 DsWA: LD DE,CDOS$DB 3SET ® CDOS DISK BUFFER PNIR
01 0080 LD BC,RECSIZ 3 % BLOCK MOVE COUNTER
ED BO LDIR
FS PUSH AF 3SAVE LOOP COUNTER
0E 15 LD C,WRFIL CEEEEEEEEEEEE]
11 005C LD DE,FCR 3% WRITE A DISK RECORD #
CD 0005 CALL CDOS HEREEEREREERE)
FE 00 cp ZERD JWRITE COMPLETED OK?
20 1B JR NZ,D$ERRS N0
F1 poP AF sRESTORE LOOP COUNTER
K} DEC A sEND OF LOOP?
20 E7 JR NZ,D$WA sNO, WRITE ANOTHER RECORD
s¥u% END INNER LOOP #a%
Figure 15, EEPROM Programmer Software (page 12 of 37),

124

0ED6
OED8
OEDB

OEDE
OEEO
QEE3
OEE5
OEE7
OEE?
OEEB

QEED
OEEE
OEF0
0EF3

0EF4
OEF8
OEFB
OEFE

1-17

C,PRTILN
DE,NSG7
oS

C,RDCHR
chos
'y
Z,D$RA
-
NZ,D$C3
DSDN

y#%% END QUTER LOOP *wx

NACRO-80 3.36 17-Mar-80 PAGE
OE 09 Ds$€3: LD
11 02F2 LD
€D 0005 CALL
0E 01 LD
€D 0005 CALL
FE 59 cp
28 C1 JR
FE 4E ce
20 EB JR
18 09 JR
F1 D$ERRS: POP
OE 09 LD
11 0438 LD
€D 0005 CALL
0E 10 D$DN: LD
11 005C LD
€D 0005 CALL
€3 0D&0 JP

PAGE

Figure 15.

AF
C,PRTLN
DE, ERRS
£D0S

C,CLSFL
DE,FCB
CDos
START

122

;l*****!*l*****

1*# ASK FOR ANOTHER EEPRORM %
S EEEEEEEEE R RN

et AMAIT awe
y##% RESPONSE? *x#
sMORE EEPROM‘S?
3YES

sINVALID INPUT?
$YES

sNO, MUST BE DONE

sCLEAR GARBAGE OFF STACK
KK KRR KK KK

% PRINT WRITE ERROR *
' EEEEEEEEEE R

- e ao

X R B R XX ERNR

3

3¢ CLOSE DISK FILE *
HEREREEREENE
3

*
ALLOW USER ANOTHER DPERATION

EEPRON Programmer Software (page 13 of 37).

0F01
0Fo01
0F02
0F03
0F04

0F05
OF07
OF0A

OFOD
OFOF
OFi2

OF15
OF18
OF1A

JFiC
OFLE
0F21
0F22
0F25

oF27
0F24
0F2C

OF2F
0F3t
0F34
OF37
0F34
0F3D

NACRO-80 3.36 17-flar-80 PAGE

F5
C3
D5
E5

0E 09
11 01AD
CD 0005

OE 0A
11 050E
€D 0005

3A 0511
FE 3A
28 0B

0E 19
€D 0005
3

32 005C
18 08

3a 0510
Eé 03
32 005C

3E 20
32 005D
01 0004
11 00SE
21 005D
ED BO

>x x Wk X

INFUT:

L

OUTPUT:

*

L 2R 3K 2N 2R 2

[Py R P T T AR T IRV T T]

CREA$FCB:
PUSH
PUSH
PUSH
PUSH

LD
LD
CALL

LD
LD
CALL

1-18

AF
BC
DE
HL

C,PRTLN
DE,NSG2
€bos

C,ROLN
DE,CONBUF
€DOS

1SAVE REGS

K K K E K K K K K K X X X K KX

3
;% PROMPT USER FOR FILENAME
IEE KK KK KX KK KKK KKK

»

R R EREE X EEREX

3
3% GET USER RESPONSE #
I EEEEEE R RS

R R R R R R R R R R R R R R R R R R E S R E R NN
THIS ROUTINE CREATES A FILE CONTROL BLOCK FOR THE FILE ¥
REQUESTED BY THE USER THROUGH CONSOLE INPUT. H

*
N/& *
%
FCB - CREATED FOR REGUESTED FILE NAME *
*
X KK K K K I X K N K K E KKK EEKKEEKXKKEEKRK

seekk® GET DISK DRIVE IN FOB M-sidiitsiiiiin ittt i

LD
cp
JR

LD
CALL
INC
LD
JR

CRasSD: LD
AND
LD

CRAsCi: LD
LD
LD
LD
LD
LDIR

A, (CONBUF+3)
COLOM
7,CRA$SD

C,CURDK
CDoS

A
(FCBDK) ,A
CRB$C1

A, (CONBUF+2)
03K
(FCBDK) ,A

A, BLANK
(FCBEN) ,A
BC,10
DE,FCBEN+1
HL ,FCBEN

sGET SECOND CHAR OF USER RESPONSE
sDID USER SPECIFY DISK DRIVE?
$YES

sNO, w##x GET CURRENT *xx
3 ##% DISK DRIVE xwx
sCHANGE IT TO FCE FORMAT
3SET CURRENT DRIVE IN FCB

3GET USER SPECIFIED DRIVE
sCONVERT TO FCB FORMAT
3SET FCB

E

I EEERE
BLANK 0UT
FILE NAME
AND EXTENT

IN THE FCB
I EEREN]

WS sl B B se
»*

w» Ak X
oA ok K X K

Figure 15. EEPROM Programmer Software (page 14 of 37).

123

OF3F
0F42
0F45
OF47
0F49
OF4A

QF4B
OF4E
0F30
OFs1
0Fs3
OF54
0F35
OF57
OF3%

OFSB
OFsC
OFSF
0Fs1
0F43

QF45
OF64

OF69
OP6A
OF4B
OF4C
OF4D

MACRQ-80 3.34 17-Mar-80 PAGE

21 0510
3a 0511
FE 3A
20 02
23

23

11 005D
3E ZE
BE

28 08
AF

BE

28 OF
ED A0
18 F3

23

11 0065
ED A0
ED AO
ED A0

AF
32 007C

El
N
€1
F1
cy

1-19

yesunnxs SET FILE NAME IN FCB 360606900606 096 36366 300606 06 9606 0096 0600 06 00696 6 00 30 300600 06 6 0 R 6

LD
LD
ce
JR
INC
INC

CR8sC2: LD

CR8$TA: LD
cp
JR
XO0R
cp
JR
LDI
JR

HL ,CONBUF+2
A, (CONBUF+3)
COLON
NZ,CRA$C2
HL

HL

DE,FCBFN
A,PERIOD
(HL)
Z,CRO$ET
A

(HL)
7,CRAS$NR

CRASTA

;SET POINTER TO POSSIBLE FILE NAHE
;GET SECOND CHAR OF USER RESPONSE
sDID USER SPECIFY DISK DRIVE?

3NO, SO POINTER IS CORRECT

3YES, w#% BUMP POINTER PAST DISK %x
3 #%% DRIVE TO FILE NAME #x»

1SET DESTINATION POINTER
y#i% AT EXTENT %xx

y#re MARKER? axx

JYES

s#e% AT END OF xxs

s#e% USER INPUT? *xx

3YES, SO LEAVE EXTENT BLANK
sNO, MOVE A CHAR TO FCB

;G0 TRY ANOTHER CHAR MOVE

yesennss SET FILE TYPE (EXTENSION) IN FCE %EEEXENREEEEREREEEEEREREEEERE

CR8S$FT: INC
LD
LDI
L0I
uDI

CRASNR: XOR
LD

POP
POP
FOP
POP
RET
PAGE

HL,
DE,FCHFT

A
(FCBNR) ,A

HL
DE
BC
AF

;BUMP POINTER TO EXTENT NAME

3SET DESTINATION POINTER
IEEEEEREEEREEREEE

3# MOVE EXTENT NAME TO FCE *
IEEEEEREERERREE

JRER INITIALIZE EE¥
yee% NEXT RECORD PNTR s

sRESTORE REGS

Fiqure 15, EEPROM Programmer Software (page 15 of 37},

124

MACRO-80 3.36 17-Mar-40 PAGE 1-20

X 2E 2K BE N 2K 2R 2R B 2B SR B BX B SR B K SR BE BE 2R BE R R 2R B B R NE B R AR 2R N 2N J

-

ke % b

* ¥
3* THIS ROUTINE CONVERTS ADDRESSES INPUT THROUGH THE CONSOLE *
;# FROM ASCII TO PURE BINARY, AND STORES THEM IN APPROPRIATE *
3* SAVE AREAS. ¥
¥ *
;% INPUT: N/A *
i *
3% OUTPUT: REG A = 0O, IF ADDR'S ENTERED PROPERLY 4
3* = -1, IF ADDR’S INVALID *
¥ FLSTAD - ##% THESE ##x *
3* FSTADD - #%% ADDRESSES wxx *
¥ LSTADD - ##x ARE *#x %
3 NXTADD - w#xw SET 113 %
I *
PEE R KRR R R R R R E R E R R KRR E RN AR EE R E R AR E R

OFSE SET$ADDR:

QF6E C5 PUSH EC $SAVE REGS ;

OF6F DS PUSH DE

O0F70 E5 PUSH HL

OF7t DD ES PUSH IX

0F73 FD E5 PUSH IY

0F7S OE 09 LD C)PRILN y#%% PROMPT USER w##

OF77 11 01BB LD DE,NSG3 s##% FOR FILE wxx

OF7A €D 0005 CALL ~ CDOS 3% STARTING ADDR wax

0F7D OE 0A LD C,RDLN HEREEEEEEEE.

OF7F 11 050E LD DE ,CONBUF 3* AWAIT RESPONSE #

or82 CD 0005 CALL CDOS R R R R KKK R RN

0F85 21 0505 LD HL,FLSTAD y## SAVE RESPONSE **

OF88 CD 1056 CALL ASSTOSBI y#% IN FLSTAD %«

0F8B FE FF cp NEG1 ;INVALID DIGITS INPUT?

OF8D CA 1021 JP Z,SETSRT ;YES

O0F9¢ CD 1029 CALL SET$KB sCHECK ADDR FOR KILOBYTE BOUNDARY

OF93 FE FF cp NEG1 sINVALID ADDR?

OF9S CA 1021 Je Z,SET4RT JYES

0F98 OE 09 LD C,PRTLN y#ex PROMPT USER wxx

OF9a 11 0259 LD DE,NSG4 y##% FOR EEPRON sxx

OF9D CD 0005 CALL CDOS y#%% STARTING ADDR %#w

Figure 15, EEPROM Programmer Software (page 14 of 37).

125

Figure 15,

126

NACRO-80 3,38 17-Mar-80 PAGE 1-21
OFA0 OE 0A LD C,RDLN EE KRR KK KRN R
0FA2 11 0S0E LD DE,CONBUF 3% AWAIT RESPONSE =
OFAS €D 0003 CALL CDOS TR KK KR K KK KX
OFA8 21 0507 LD HL ,FSTADD ;%% SAVE RESPONSE #¥
OFAB CD 1056 CALL ASSTO$BI je% IN FSTADD
OFAE FE FF ce NEG! ;INVALID DIGITS INPUT?
OFBO Ca 1021 JP Z,SET4RT ;YES
OFB3 FE 01 cp ONE 3ANY DIGITS INPUT?
OFBS 20 12 JK NZ,SETSFA 3NO
0FB7 DD 21 0505 LD IX,FLSTAD s#¢ THE START ADDR IN THE FILE = *x
OFBB FD 21 0507 LD IY,FSTADD y%% (FLSTAD) MUST BE LESS THAN THE
OFBF CD 103F CALL SETsCMP ;%% START ADDR OF THE PROM (FSTADD) #»
OFC2 FE FF ce NEG1 315 FLSTAD (= FSTADD?
OFC4 CA 1019 JP 7,SETSER N0, ERROR
OFC7 18 08 JR SET$C3 $YES
OFC? ED 5B 0305 SET$FA: LD DE, (FLSTAD) y##% SET FSTADD #xx
OFCD ED 53 0507 LD (FSTADD) ,DE y*%% EQUAL TD FLSTAD *xx
0FDt CD 1029 SET$C3: CALL SET$KB ;CHECK ADDR FOR KILOBYTE BOUNDARY
OFD4 FE FF cp NEG1 ;INVALID ADDR?
OFDs CA 1021 JP Z,SETSRT ;YES
OFD9 OF 09 LD C,PRTLN j¥x% PROMPT USER s
OFDB 11 0285 LD DE,NSGS y%#% FOR EEPROM s
OFDE CD 0005 CALL CDOS yex% ENDING ADDR wx
OFEl OE 0A LD C,RDLN IEEEEEER R RN
OFE3 11 050E LD DE,CONBUF 3% AWAIT RESPONSE +
OFE6 CD 0005 CALL CDos SEEEEERERER
OFE? 21 0509 LD HL,LSTADD %% SAVE RESPONSE
OFEC CD 1036 CALL AS$TOSBI ;¥% IN LSTADD
OFEF FE FF CcP NEG1 JINVALID DIGIT INPUT?
OFF1 28 2E JR Z,SETSRT YES
OFF3 DD 21 0507 LD IX,FSTADD j%% PROM START ADDR (FSTADD) x#
OFF7 FD 21 0509 LD 1Y,LSTADD 3% MUST BE LESS THAN THE *»
OFFB CD 103F CALL SET$CMP ;%% PROM END ADDR (LSTADD) ##
OFFE FE FF cp NEG1 3IS FSTADD (= LSTADD?
1000 CA 1019 JP Z,SETSER N0, ERROR
1003 ED 3B 0507 LD DE, (FSTADD) je% INIT NXTADD ##
1007 ED 53 0503 LD (NXTADD) ,DE s#¢ 10 FSTADD #»

EEPROM Progqrammer Software (page 17 of 37).

100B
100D
100F
1012
1014
1017

1019
1018
101E

1021
1023
1025
1026
1027
1028

1029
1029
1024
102C
102E
102F
1030
1031
1033

1034
1034
1039
103C
103t

1-22

C,PRTCHR
£,CR
CDOS
E,LF
£D0S
SETSRT

C,PRTLN
DE, ERRS
£D0S

Iy
IX
HL
DE
BC

HERERER NN
MOVE CONSOLE
3% CURSOR TO
3¥ NEW LINE
HEEERRER

-
»
L IR SN

3K R K KX ER XK K

;* PRINT ADDR ERROR »
HEEEEREREEEE

sRESTORE REGS

s#xx CHECK ADDR TO BE SURE IT w
s##% 15 ON A KILDBYTE BOUNDARY *%x

MACRO-80 3.36 17-Mar-80 PAGE
0E 02 SET$C5: LD
1E 0D LD
£b 0005 CALL
1E 0A LD
€D 0005 CALL
18 08 JR
OE 09 SET$ER: LD
11 0443 LD
CD 0005 CALL
FD E1 SET$RT: POP
DD El1 PopP
El Pop
D1 PoP
€1 popP
c9 RET

SET$KB:

7E LD
E6 03 AND
20 06 JR
23 INC
7E LD
A7 AND
20 01 JR
ce RET
OE 09 S$KSER: LD
11 048 LD
€D 0005 CALL
3E FF LD
co RET

A, (HL)
034
NZ,SKER
HL

Ay (HL)

A
NZ,SKER

C,PRTLN
DE,ERR7
CD0S
A,NEGL

sLOAD MSB

$ARE BITS LESS THAN 1024 SET?
;YES

sa%% LOAD %xx

seex LGB ¥an

sARE ANY LSB BITS SET

JYES

;***l*i*******

3* PRINT BOUNDARY ERROR *
IR EEEE R R NN

+SET BOUNDARY ERROR FLAG

Figure 15, EEPROM Programmer Software (page 18 of 37).

127

NACRO-30 3.36 17-Mar-80 PAGE 1-23

y#%% CHECK RELATIVE MAGNITUDES OF ADDRESSES *#x
yitnane [X SHOULD POINT TO SMALLER VALUE wssuwsx

103F SETSCHP:
103F FD 7E 00 LD 4, (1N ;LOAD NSB
1042 DD BE 00 cP (IX) I 2 (I
1045 38 OC JR C,SSCSER 3¢, IMPLIES ERROR
1047 20 08 JR NZ,SCS0K 3>y MEANS LSB CAN BE IGNORED
1049 FD 7E 01 LD A, (I1+1) sLOAD LSH
104C DD BE 01 cp (IX+1) 3UIY41) ¢ (IXeD)
104F 38 02 JR C,5$CSER 3¢, IWPLIES ERROR
1051 AF S$CS0K: XOR A 3SET (IX) (= (IY) PLAG
1052 €9 KET
1053 3EFF S$CSER: LD A, NEGL $SET (IX)) (1Y) FLAG
1055 €9 RET
PAGE

Fiqure 15, EEPROM Prograsmer Software (page 19 of 37).

128

r———-——————-—-——-——————-—-————————‘

MACRO-80 3.34 17-Mar-80 PAGE 1-24

REEEE R R N R N RS NN RN
1
]
3* THIS ROUTINE CONVERTS ASCII ADDRESSES INTO BRINARY.

x

INPUT: HL - PNTR TO SAVE AREA FOR CONVERTED ADDR
CONBUF - THE CONSOLE BUFFER CONTAINING ASCII

T0 BE CONVERTED

*® & ¥

QUTPUT: (HL) - WORD WITH BINARY ADDRESS

Fiqure 15,

PO S O S B Wl BE By WP W ws
t

EEPROM Programmser Software (page 20 of 37).

129

%
*
*
*
*
*
*
*
*
*
*
*
*

* REG A = 1, IF (SEMI)-VALID HEX INPUT BY USER
* = 0, IF ND HEX CHAR'S WERE INPUT
* = -1, IF IRVALID INPUT BY USER
*
EREEE R EEE R R R R E R R EEEEE R XK KRR KRR ERN
1056 ASS$TOSBI:
1056 €5 PUSH BC 3SAVE REGS
1057 £S5 PUSH HL
1058 DD ES FuUsSH IX X
1054 FD ES PUSH IV
105C AF XOR A HERER NN
1050 47 LD B,A ;% CLEAR BC #
105E 4F LD C,A HER N B XN
105F 77 LD (HL) ,A j#% JERO THE SAVE AREA wxx
1060 23 INC HL s#%% AND SET HL FNTR TO xxx
1061 77 LD (HL) ,A ;#%% LSB OF SAVE AREA %xx
1062 FD 21 OS0F LD 1Y,CONBUF+1 ;1Y POINTS TO » OF CHAR IN CONBUF
1066 FD 4E 00 LD C, (I $SET BC TO # OF CHAR IN CONBUF
1069 BY cp c 315 CONBUF EMPTY?
1064 28 37 JR 1,A$BIRT JYES
106 FD E5 PUSH IY $NO, %xx SET IX PNTR wws
106E DD El pop IX 3 #x% TO LAST CHAR *xx
1070 DD 09 ADD IX,BC 7 w%x IN CONBUF xux
1072 FD 34 00 30 Lb (I1),°0° 3SET IN CASE ODD ® OF CHAR IN CONBUF
1076 06 02 Lb B,2 $INIT LOOP COUNTER
1078 79 LD A,C s%#x DID USER RESPOND WITH ®x
1079 FE 03 cp 3 y#%% LESS THAN 3 DIGITS? #sex
1078 30 01 JR NC,ABC2 iNO
1070 05 DEC B 3YES, SET LOOP COUNTER TO 1
107€ CD 10AA AS$BSC2: CALL ASBSCONV jCONVERT LS NIBBLE
108t FEFF ce NEG1 ;INVALID HEX INPUT?

MACRG-80 3.36 17-Mar-80 PAGE 1-25
1083 28 15 JR 1,A$BSER YES
1085 ED 47 RRD N0, SAVE LS NIBBLE
1087 DD 2B DEC 1X sBURP THE ASCII PNTR
1089 CD 10AA CALL ASBSCONY jCONVERT WS NIBBLE
108C FE FF cp NEG1 sINVALID HEX INPUT?
108E 28 0B JR 1,ASBSER }YES
1090 ED 67 KRD 35AVE NS NIBBLE
1092 DD 2B DEC X 1BUMP THE ASCII PNTR
1094 2B DEC HL 3SET PNTR TO MSB OF ADDR SAVE AREA
1095 10 E7 DINZ AsBSC2 ;JumP BACK IF NOT DONE .
1097 3E 01 LD #,0NE $SET INFUT 0K FLAG :
1099 18 08 JR ASBIRT !
1098 OE 09 ASBSER: LD C,PRTLN PEEEE KR KK E KKK KN f
109D 11 04A8 LD DE,ERR7 1* PRINT INVALID ADDR ERROR ¥ i
10A0 CD 0005 CALL CDOS KKK KK KKK KKK KKK {
10A3 FD EI AS$BSRT: POP IY ;RESTORE REGS ;
10A5 DD El PoP IX
107 EL POP HL
1048 C1 POP BC ‘
109 C? RET
1044 ASBSCONV:
10AA DD 7E 00 LD A, (IX) 3LOAD CHAR TO BE CONVERTED
10AD FE ¥ ce ‘F'+l y¥xx FILTER SONME *xx
10AF 30 09 JR NC,A$B4CE j#% BAD INPUTS mxx
10t FE 3A cp 9+l IXEEEREEREEENN
1083 38 02 JR C,A$BSCS 3% CONVERT ASCII
10B5 D6 07 SuB 7 ;% T0 HEXIDECIMAL *
1087 E4 OF AS$BSCS: AND OFH IR EEEEEREER
1089 9 RET
108A 3E FF A$BSCE: LD A,NEG1 ySET INVALID DIGLT FLAG
10BC Cy RET

PAGE

Fiqure {5, EEPROM Programmer Software (page 21 of 37).

130

MACRO-80 3,36 17-Mar-80 PAGE 1-26

TE RN R B E B K B KK K R K E K K KK KKK KKK KERER KRR &R
3# THIS ROUTINE POSITIONS A DISK FILE SO THAT THE FIRST RECORD *
3* IN DSKBUF IS THE ONE TO BE PROGRAMMED INTO THE FIRST EEPROM, »
* *
3¢ INPUT: FLSTAD - START ADDR OF PROG ON DISK *
* FSTADD - FIRST ADDR TO BE PROGRAMMED *
* *
3 QUTPUT: DISK FILE IS POSITIONED SO THAT NEXT READ GETS *
] PROPER RECORD., *
HJ REG A = 0, IF FILE POSITIONED W/0 ERRORS *
H = -1, IF FILE POSITIONING ERROR *
% *
;* R R K R KR K E K KK KX KK KKK KK KX KX K KX EEERNER

108D POS$FIL:

108D €5 PUSH BC $SAVE KEGS

10BE D5 PUSH DE

10BF E5 PUSH HL

10CO DD ES PUsH IX :

10C2 34 0505 LD A, (FLSTAD) $INIT %% HL WITH *x

1005 &7 Lb H)A 3 #% START

10C6 3A 0506 LD A, (FLSTAD+1) #% ADDR *x

10C9 4F LD LA H #% ON FILE *+

10CA DD 21 0507 LD IX,FSTADD 3 * PNTR TG EEPROM FIRST ADDR

10CE 11 0080 POS$NR: LD DE,RECS1Z y*#% ADD REC SIZE %%x

D)) IS Y ADD HL,DE jexe TO FLSTAD *wx

1002 DD 7E 00 LD A LIX) ;LOAD MSB

1005 BC cp H JERE FLSTAD » FSTADD Wil

1006 38 20 JR C,POSSDN y##% FSTADD IS W/IN NEXT RECORD *xx

1008 20 06 JR NZ,POSS$KD sFLSTAD = FSTADD ... LOAD LSB

100A DD 7E O1 LD A (IX+1) ;L0AD LSB

100D ED cp L R FLSTAD) FSTADD Lidd

10DE 38 18 JR C,POSSON yoex FSTADD IS W/IN NEXT RECORD #xx

10E0 0E 14 POSSKD: LD C,RDFIL HEEEEEEEE RN

1082 11 005C LD DE,FCB 3% READ A DISK RECORD *

10E5 CD 0005 CALL CDOS NEEEEEEEERNER

1088 FE 00 cp ZERD READ COMPLETE?

10EA 28 E2 JKR Z,POSSNK 3YES, GO LOOK AT NEXT RECORD

10EC OE 09 LD C,PRTLN IO, % % % % B & E X R R KRR R EKY

10EE 11 04CA Ld DE,ERR8 3 *® PRINT ERROR OR UNEXPECTED EOF #

10F1 CD 0005 CALL CDOS S EEEREEEEEEEREREE

Figure 15, EEPROM Prograsser Software (page 22 of 37).

131

———— e A

10F4
10F4

10F8

10F9
10FB
10FC
10FD
10FE

NACRO-80 3.36

3E FF
18 01

AF

DD El
El
)1
ci
c?

17-Mar-80 PAGE 1-27

LD A,NEGE 3SET ERROR FLAG
JR POSSRT

POSSDN: XOR A 3SET NO ERRORS FLAG

POSSRT: POP IX sRESTORE REGS
Fap HL -
POP DE A
PoF BC
RET

PAGE

Fiqure 15. EEPROM Programmer Software (page 23 of 37).

132

MACRO-80 3.36 17-Mar-80 PAGE 1-28

HEREEEEERERENEEEEEENEIENES I NN NENE;

i *
3* THIS ROUTINE FILLS DSKBUF WITH DATA READ FROM A DISK FILE, *
3% THE MAXIMUM SIZE BLOCK READ IS 1024 BYTES (THE SIZE OF THE *
3 HNVM 3008 EEPROM). %
¥ * :
3% INPUT: N/A *
i* *
3% OUTPUT: DSKBUF - FILLED WITH RECORDS JUST READ *
1* REG A = -1, IF NO RECORDS READ %
% = 0, IF KRECORDS READ OK *
1* *
;*!**‘*ﬁ*****************‘**********
10FF RD$FIL:
10FF () PUSH BC 1SAVE REGS E
1100 DS PUSH DE
1101 ES PUSH HL)
1102 056 08 LD B,BF sINITIALIZE LOOP COUNTER
1104 11 0540 LD DE,DSKBUF sINITIALIZE DSKBUF PNTR

j#%% READ LOOP wx

ue o KD$RA: PUSH DE 3SAVE DSKEUF PNTR

1108 OE 14 LD C,RDFIL HEEEEEEERERRER
110A 11 005C LD DE,FCB 3* READ A DISK RECORD
1100 €D 0005 CALL CDpas HEREEEEEEEERE]
110 n POP DE sRESTORE DSKBUF PNTR

i1t FE 01 cp ONE ;EOF?

1113 28 OE JR I,RD$EF 3YES

s 0 PUSH BC 3SAVE LOOP COUNTER

1116 01 0080 LD BC,RECSIZ jNO, ®xx MOVE DATA FRON xxx
119 21 0080 LD HL,CDOS$DB 3 #%x CDOS DISK BUFFER #xx
111C ED Bo LDIR y %= TO DSKRUF 113
HiE Q0 poP BC yRESTORE LOOP COUNTER

111F 10 B DINZ RD$RA 360 READ ANOTHER RECORD UNTIL BUF FULL
1120 18 09 JR RD$C3

yex END LOOP %x#

1123 3E 08 RD$EF: LD A,8F 3#e% DOES LOOP COUNTER INDICATE w»
1125 B8 cp B s#%% AT LEAST ONE RECORD READ? ##
1126 20 04 JR NZ,RD$C3 3YES

Figure 15, EEPROM Programmer Software (page 24 of 37),

133

MACRO-80 3,34 17-Mar-80 PAGE 1-29
1128 3E FF LD A,NEG1 iND, SET REG A AS NO RECS READ 1
1124 18 01 JR RD$RT
112C AF RDS$C3: XOR A ;SET REG A AS RECS READ
120 E1 RD$RT: POP HL sRETORE REGS
H2ZE N POP DE
12F Ct pPoP BC ’
1130 C¢ RET
PAGE

Figure 15, EEPROM Programmer Software (page 25 of 37).

134

MACRO-80 3,36 17-Mar-80 PAGE 1-30

IR R A R A I R RO O IR R R IR R ORI X R IR JE 2K 2N 2% 2% AN

3* *
3% THIS ROUTINE CLEARS A EEPROM TO ZEROS THRGUGH THE FOLLOWING *
3* SEQUENCE OF CONTROL LINE MANIPULATIONS: *
3 s =0 *
i CE =1 *
3* 0E =1 ¥
3* v = 0, *
;* FOLLOWED BE OE BEING PULSED FROM 1 TO 0. AFTER THESE *
3¢ MANIPULATIONS, THE EEPRON IS CHECKED TO BE SURE IT CONTAINS *
3% ALL ZERDS. *
i* *
3% INPUT: N/A *
i* *
3% OUTPUT: EEPRGM IS CLEARED ¥
3* REG A = 0 - IF EEPROM ERASED *
* = 1 - IF EEPROM NOT ERASED *
% *
;* B K R KRR K B R K KR KKK KK KR KR KKK KN KK KN KKK {
1131 ERASIC:
1131 €5 PUSH BC 3SAVE REGS
a2 05 PUSH DE .
1133 B PUSH HL
1134 0E 0v LD €,PRILN SHEE R E R KR KR R E R R R KRR XK
1136 11 033C LD DE,MSGERA 3% NOTIFY USER OF ERASE IN PROGRESS #
1139 CD 0005 CALL CDOS N R R R E R R R
113C 3E O Lb A,V$5+DSCE+DSOE s#x% INIT CONTROL LINES sxx]
1138 D3 24 ouT (PROMD) ,A y#%% GEFORE AFPLYING 17V w%xx
1140 E6 F7 AND vs17 ye¢ CLEAR VDD BIT,
1142 D3 24 ouT (PROND) ,A %% RESULT - VDD = 17V »»
1144 CD 117B CALL VSSTABL yWAIT FOR VOLTAGE TO STABLIZE
1147 E4 FD AND ESOE ;%% PULSE OE LOW, FORCING xxx H
1149 D3 24 ouT (PROMD) ,A ye#% THE ERASE TO BEGIN wxx
;0E PULSE WIDTH IS 100 MICRO-SECS
1148 06 1E LD B,30 ;%% THIS LOOP DELAYS *»
1140 10 FE DINZ 8 y¥¢ FOR 99 OUT OF
L114F 00 NOP ;%% THE 100 REQUIRED *»
1150 F6 02 R D$OE ju### GET OF BACK wax
1152 D3 24 ouT (PROMD) ,A yee TO INACTIVE s

Fiqure 15, EEPROM Programmer Software (page 26 of 37).

135

1154
1154
1158

1158

115E
1161
1144
1145
1167
1149
114C

116E
1170
1173
1176

1177
1178
1179
1174

1178
1178
117¢€
117
1130
1181

NACRO-830 3.36 17-Mar-80 PAGE
Fé 08 OR
D3 24 outT
CD 117B CALL
€D 1182 CALL

01 0400
21 0960
AF

ED Al
20 05
EA 1143
18 09

OE 09
11 0381
CD 0005
3C

El
b))}
€1
c?

(%]
06 10
10 FE
¢1
cy

—————— e
1-31

vs5 ;¥ GET VDD BIT, ##x

(PROMD) ,A ;%% RESULT - VDD = 5V #x

Y$STABL sWALT FOR VOLTAGE TO STABLIZE

IC$RD {FILL THE EEPROM BUFFER

y#%% VERIFY THAT IC WAS ERASED (ALL ZEROS) #xx

LD
LD
XOR
ERASCP: CPI
JR
JP
JR

ERA$E2: LD
LD
CALL
INC

ERASKT: POP
POP
POP
RET

BC,BF*RECSIZ sINITIALIZE #*# BUFFER LENGTH #¥

HL ,FRONBF H %% BUFFER FOINTER ##

A 3 #% COMPARISON REG
NZ,ERASE2 3JUNP IF BUFFER DID NOT CONTAIN ZERO
PE,ERASCP 3JUNP IF NOT END OF BUFFER

ERASRT sRETURN TO CALLER WITH ERROR NOT SET
C,PRTLN y#%x NOTIFY USER wax

DE,ERR2 s#u% THAT EEPROM wxx

Cnas ;¥%% DID NOT ERASE #x

A $SET ERROR FLAG FOR RETURN TO CALLER
HL sRESTORE REGS

DE

BC

s#%% THIS ROUTINE ESSENTIALLY A WAIT LOOP TO *xw
;%% ALLOW THE 5V - 17V SWITCH TO STABLIZE, x%x
3%#%% WAIT TINE IS APPROX 60 MICRO-SECONDS. wex

V$STABL:
PUSH BC
LD B,10H
DINZ 8
POP EC
RET

PAGE

Fiqure 15, EEPROM Programser Software (page 27 of 37).

135

MACRO-80 3.36 17-Mar-80 PAGE 1-32

SRR R R R R R R E R R R E R R R R R R RN
3 %
;% THIS ROUTINE READS THE CONTENTS OF A EEFROM INTO ITS ¥
1* DEDICATED BUFFER AREA *
3% *
3% INPUT: N/A ¥
3* *
3* OUTPUT: PROMBF - CONTAINS EEPROM IMAGE *
i#* *
N SRR R EREEE R R R R R R R R R RN EEEE

1182 IC$RD:

1182 F5 PUSH AF 3SAVE REGS

1183 CS PUSH BC

1184 DS PUSH DE

1185 ES PUSH HL

1186 3E 90 LD a,CCw2 y¥%x PROGRAM PORTS B, C - OUTFUT xx#

1188 D3 23 out (PCNTRL) ;A JRER A - INPUT #xx

1184 3E 0D LD A,V$5+DSCE+ESCS j%%x VDD = 5V, DISABLE CE, *x»

118C D3 24 out (PROMD) ,A JEER ENABLE OE % CS *ik

118E OE 20 LD C,PROMA sINITIALIZE # PORT ADDR FOR INPUTS

1190 11 0000 LD DE,0 3 * EEPROM ADDR

1193 21 0960 LD HL ,PRONBF 3 ¥ EEPROM BUFFER PNTR

;%% LOOP UNTIL END OF EEPROM IS READ #¥x

1196 F5 IC$RA: PUSH AF 35AVE CONTROL LIME STATUS
1197 7A LD f,D SEEREERRERN.

1198 D3 22 out (PRONC) ,A 3¢ SET EEPROM *

1194 78 LD A,E 3% ADDR BUS »

1198 D3 21 outT {FROMB) ,A KR K KR KK

1190 Ft ity AF 3RESTORE CONTROL LINE STATUS
119 E6 FB AND E$CE y#nx ACTIVATE %xx

11A0 D3 24 out (PROMD) ,A y*%% CHIP ENABLE wxx

11A2 ED 40 N B,(C) sREAD EEPROM DATA BUS

1AM Fb 04 oR DSCE j#x% DEACTIVATE nxx

1146 D3 24 out {PROMD) ,A s#ux CHIP ENABLE wxx

11A8 70 LD {HL),B 3PUT BYTE JUST READ INTO PROMBF

Figure 15, EEPROM Programmer Software (page 28 of 37).

137

1189
11AR
11AB

11AD

11AF
11B0
1181
1182
1183

MACRO-80 3,34

23
13
CB 52

28 E7

El
D1
c1
F1
Cy

Figure 15,

17 -Mar-80 PAGE

INC
INC
BIT

JR

;*%% END LOOP

POP

POP

POP

FOP

RET
PAGE

EEPROM Praogrammer Softmware (page 29 of 37).

1-33

HL
DE
2,D

Z,ICSRA
1213

HL

DE

BC
AF

138

;BUNP PROMBF PNTR
sBUNP EEPRON ADDR

:DID ADDR OVERFLOW INTO BIT 117
$(IE, ADDR) 1K)

;NO, GO READ ANOTHER BYTE

sRESTORE RECS

I ST

MACRO-80 3,36 17-Mar-80 PAGE 1-34 |

AR 2R BE IR SR SR K JE BE IR K K B BE BN BE BE 2R BE BE BE R SR R R K 2R B B AR 2 BE BN

Y
i *
3*# THIS ROUTINE TRANSFERS DATA FROM THE DISK FILE BUFFER AREA *
;# T0 THE EEPHONM *
i *
s# INPUT: DSKBUF - BUFFER CONTAINING DATA TO BE PROGRAMMED. *
3 NXTADD - NEXT ADDR TO BE PROGRAMMED, ASSUMED TO BE * ’
3 ON A KILOBYTE BOUNDARY. *
3% LSTADD - LAST ADDR TO BE PROGRAMMED, ¥
#* *
3¢ OUTPUT: EEPRON IS PROGRAMMED ¥
#* *
THOE KR B E K E R K KKK K KKK KR E KK EEEKEREEERKEEKES
11B4 PROGSIC: ‘
11B4 F5 PUSH AF 3SAVE REGS)
185 €5 PUSH BC]
11Bé D5 PUSH DE
1187 ES PUSH ML ;]
1188 OE 09 LD C,PRILN HEEEEEEEEEEENER R RN N i
11BA 11 0344 LD DE,MSGPRG +# NOTIFY OF PROGRAMMING IN PROGRESS *
118D CD 0005 CALL CDOS N R RN E R R RN
110 CD 12C1 CALL INIT$BCT JINIT # % % % % # % % % % ¥ % 2 ¥
11€3 40 LD H,B H * EEPROM PROGRAM COUNTER «
1cs &9 LD L,C H EEEEEEEERERERE N
11C5 ED 5B 0503 LD DE, {NXTADD) 3 BRI
1409 43 LD B,E i % NEXT
11CA 44 LD C,D H % ADDK
118 €5 PUSH BC 3 RPN
11cC 11 0560 LD DE, DSKBUF 3 * DSKBUF PNTK
t1iCF 3t &0 LD A,CCW1 yax% PROGRAM PORTS A, B, C »xx
1101 D3 23 ouT (PENTRL),A s##x FOR LATCHED OUTPUT wxx
1103 3E OF LD A V85+DSOE+DSCE 3nmx VDD = 5V, L
1105 D3 24 our (PROND) ,A s##% DISABLE CS, OE, CE w#xx
1107 Eé F7 AND vs17 s#¢ CLEAR VDD BIT,
1109 D3 24 out (PROMD) ,A 3%% RESULT - VDD = 17V =&
1108 CD 1178 CALL VS$STABL $WAIT FOR VOLTAGE TO STABLIZE

Fiqure 15, EEPROM Programmer Software (page 30 of 37),

139

MACRO-30 3,356 17-Mar-80 PAGE 1-35

s#x% LOOP UNTIL EEPROM IS PROGRAMMED sxx

{1IE €1 PRGSNBs POP BC sRESTORE NXTADD
130} S PUSH AF 3SAVE CONTROL LINE STATUS
11E0 78 LD A)B SRR EEEE N
111 D3 22 ouT (PRONC) ,A 1* SET EEPROM #
11E3 79 LD A,C 3% ADDR LINES *
11E4 D3 21 ouT (PROMB) ,A SRR R RN
11E6 1A LD A, (DE) s#%x GET EEPROM x#x
1167 D3 20 ouT (PROMA) ,A y%%x DATA LINES xxx
119 13 INC DE 3BUMP DSKBUF PNTR
11IEA F FoP AF jRESTORE CONTROL LINE STATUS
11EB 03 INC BC s#% BUNMP AND *»
1iEC G5 PUSH BC 3%% STORE NXTADD #*
11ED E6 FB AND E$CE ;%% ENABLE wxx
11EF D3 24 ouT {PROMD) ,A jeee CE xax
sCE PULSE WIDTH IS 100 MICRO-SECS
11F1 06 IE LD B,30 ;%% THIS LOOP DELAYS *x
11F3 10 FE DINZ % 3% POR 99 OUT OF THE w#
11F5 00 NOP j*% 100 REQUIRED ##
11F6 F6 04 OR D$CE j#%% DISABLE #%x
11F8 D3 24 ouT (PROMD) ,A ¥ (B wxs
11FA 01 0000 LD EC,ZERO TE R K K KR KKK KKK KKK KKK
U ¥ SCF 1% DECREMENT EEPRON PROGRAM COUNTER
fiFE ED 42 SEC HL,BC SHE N K K KKK KN K KR KK KK KK
1200 20 DC JR NZ ,PRGSNB sBRANCH BACK UNTIL DONE

s#%x END LOOP w#ex

1202 F6 08 oR vss y##x SET VDD BIT, er
1204 D3 24 ouT {PROMD) ,A s%%% RESULT - UDD = 5V wxs
1206 CD 1178 CALL VSSTABL sWAIT FOR VOLTAGE TO STABLIZE
1209 Ci POP BC sCLEAN UP STACK
1200 El POP HL sRESTORE REGS
1208 Dt POP DE
120 Ci pPOP BC
1200 Fi PapP AF
1208 C9 RET

PAGE

Pigure 15, EEPROM Programmer Software (page 31 of 37},

140

NACRO-80 3,36 17-Mar-80 PAGE 1-36

IR 2R SR 2R 2N BE BE BR BE B X B BE B BK BE BE BE BE BE BE 2R BN SR BE 2R R B AR B R BE 3K BN]

x »

THIS ROUTINE COMPARES THE DATA CONTAINED IN THE DISK FILE
AND EEPROM BUFFERS, MAKING SURE THEY ARE EQUAL

®x &

INPUT: DSKBUF - BUFFER FILLED WITH DATA TO BE COMPARED
TO PROM BUFFER.

»* W ok &

#*
*
*
*
*
#*
*
OUTPUT: APPROPRIATE MESSAGES *
*
*
*
*

WS P B B S WS S W B B B B w

* REG A = 0, IF NO ERRORS ENCOUNTERED
* = -1, IF COMPARISON ERRORS
*
R K KK R R KK R KR KKK KR KK KK E R K KR K EKNE KX
120F VER$IC:
120F 05 PUSH BC $SAVE REGS
1210 DS PUSH DE
1211 IS PUSH HL
1212 0E 09 LD C,PRTLN IR R R R EEREERE N
1214 11 0333 LD DE ,MSGVER 3% NOTIFY OF VERIFY IN FROGRESS «
1217 €D 0005 CALL CDos R E R E R R R R K AN R KR AN
1214 CD 1182 CALL ICs$RD
121D AF XOR A JINIT #% ERROR
121E 32 050D LD (ERRCNT) ,A 3 #% COUNTER »#
1221 CD i2c1 CALL INITSBCT 3 * COMPARE COUNTER
1224 3A 0503 LD A, (NXTADD) IEEEEEEE RN N
1227 47 LD H,A 1 *
1228 3A 0504 LD A, (NXTADD+1) 3% ¥
1228 4F LD L,A * *
122 W AND A 3% BUMP NXTADD FOR #
1220 ED 4A ADC HL,BC 3% NEXT EEPRON &
122F 7C LD A H 3% *
1230 32 0503 Lb (NXTADD) ,A i *
1233 7D L AL 3 *
1234 32 0504 LD (NXTADD#1),A % % % & % % ¥ ¥ ¥ ¥
1237 11 095F LD DE,PRONBF-1 sINITIALIZE # EEPROM BUFFER PNTR
1238 21 0560 LD HL, DSKBUF H * DISK BUFFER PNTR

s#%x LDOP UNTIL ENTIRE BLOCK IS VERIFIED sxx

1230 13 VERSNB: INC DE yBUNP PROMBF PNTR TO NEXT BYTE

Figure 15, EEPRON Prograsmer Software (page 32 of 37).

141

r—

123E
123F
1241
1244
1247
1249

1248
124C
124D
124F
1250

1252
1253
1257
1259
1258

125D
125F
1262

1265
1266
1267
1268

1269
1264
1268
126C

126D
126E
126F
1270
1273
1275

MACRO-80 3,36 17-Mar-80 PAGE
1A LD
ED Al CPl
C4 1269 CALL
34 050D LD
FE 10 cp
28 OE JR
AF XOR
B8 cp
20 EE JR
BY? ce
20 EB JR

34 050D
FE Q0
28 04
3E FF
18 08

0E 09
11 0314
€D 0005

E1
)
€1
¢?

B3
€5
DS
ES

D3

E5

A7

01 0561
ED 42
22 0508

1-37

A, (DE)

NZ ,VERSE4
A, (ERRCNT)
MAXERR

Z, VERSC2

A
B
NZ ,VERSNB
c
NZ ,VERSNB

y#x% END LOOP ww

LD
cp
JR
VER$C2: LD
JR

VER$C3: LD
LD
CALL

VER$RT: POP
pop
FopP
RET

s#%# PRINT AN ERROR LINE xux

VER$E4: PUSH
PUSH
PUSH
PUSH

A, (ERRCNT)
2ER0
Z,VERSC3
A NEG1
VER$RT

C,PRTLN
DE,MSGa
£DOS

HL
b}
BC

AF
BC
DE
HL

sLOAD A BYTE FOR COMPARISON

sCOMPARE EEPROM AND DISK BUFFERS
sBYTES NOT EQUAL - CALL EKROR ROUTINE
(4% HAVE WE PRINTED MAX #xs

s%#% NUMBER OF ERRORS? x

sYES, THATS ENGUGH, IGNORE REST OF BUF

»

I EEEEEERERE
IF BLOCK COUNTER
NOT EQUAL 0 THEN

CONTINUE LOOP

EEEERENEN

x

*
o K W, W

s B we W

*

y¥ux WERE ANY ERRORS #x¥
ye%% ENCOUNTERED? wxx
sND

3YES, SET ERROR FLAG

ISR R EEEE R RN
;* PRINT NO ERRORS FOUND «
SRS EEEEEEER R RN,

sRESTORE REGS

3SAVE REGS

;*l!**l**il**i*l!*****l***i&***!***l* INITIALIZE TOP OF STACK ww#xx

PUSH
PUSH
AND
LD
SBC
LD

DE

HL

A
BC,DSKBUF+1
HL,BC
(ERRADD) ,HL

y¥#% FOR INTERFACE TO FOLLOWING *x»
ynanienik PRINT ALGORITHM ssexmiaiss

sRESET CPU CARRY FLAG

TEOE KRB R EE KRR KRN X R KRN
s# COMPUTE EEPROM ERROR ADDR ¥
3% ADDR = (ERRADD + 1) - DSKBUF - 1 #

Figure 15, EEPROM Programmer Software (page 33 of 37).

142

r—-————-——-——-—_-——————————‘

P MACRO-80 3.36 17-Mar-80 PAGE 1-38
1278 21 050C LD HL ,ERRADD+1 i* ADDR = HL - DSKBUF - 1 #
1278 ES PUSH HL I SRR RN E RN NN NN
127C 3A 050D LD A, (ERRCNT) y#¥% HAVE THERE BEEN #x«
127F A7 AND A jea% ANY ERRORS YET? #wx
1280 20 08 JR NZ ,VER$CS yYES, 50 SKIP ERROR BANNER
1282 OE 09 LD C,PRTLN PEEEE R R R EEEED KX
1284 11 03D2 LD DE,ERR4$0 3% PRINT DIFFERENCE BANNER #
1287 CD 0005 CALL CDOS IS EENEEEEEEEENEN
1264 OE 09 VERS$CS: LD C,PRTLN MK KKK K KKK
128C 11 O41E LD DE ,ERR4$1 3* MOVE CURSOR
128F CD 0005 CALL CDOS $H R E KX K KKK
1292 El PopP HL HEEEEERREN
1293 Cb 12E5 CALL PRTSBYT 3% PRINT EEPRON *
1296 28 DEC HL 3# ERROR ADDR
1297 €D 12E5 CALL PRTSBYT HHEE R KR KKK .
1294 11 0434 LD DE ,ERR4$2 sHe% PRINT wax
1299 CD 0005 CALL Cbos 3e%% SLASH wxx
12400 El pPoP HL 3GET FILE PNIR
121 2B DEC HL sADJUST TO PROPER BYTE
12a2 CD 12E5 CALL PRTSBYT sPRINT BYTE VALUE
12a5 CD 0005 CALL CDOS s*%% PRINT A SLASH wxx
128 El POP HL s#%% PRINT PROM sux
12a9 CD 12E5 CALL PRT$BYT y%x% BYTE VALUE xxx
124C OE 02 LD C,PRTCHR IEEEEENEN
12AE 1E 0D LD E,CR 3¢ MOVE CURSOR #
1280 CD 0005 CaLL Cpos 3% TO NEXT #
123 1E 0A LD E,LF 3% LINE *
1285 CD 0005 CALL CDOS IEREEEERN!
128 3C INC A j##% BUMP ERROR w#x#
1289 32 050D LD (ERRCNT) ,A yexx COUNTER wxx
12BC E! POP HL sRESTORE REGS
1280 M pPoP DE
1286 (1 POP BC
128F Fi pPoP AF
120 C9 RET
PAGE

Figure 15, EEPROM Programser Software (page 34 of 37),

143

MACRO-80 3,36 17-Mar-80 PAGE 1-39

HE R EEEREEREBEEEEEREEEEEEEEERENEENENESEERSS N

H *
3% THIS ROUTINE COMPUTES A BLOCK LENGTH THAT IS THE MAXIMUN OF *
;# EITHER LSTADD - NXTADD + 1 ¥
¥ OR *
#* BF # RECSIZ (CURRENTLY 1024) *
* ¥
3# INPUT: NXTADD - NEXT EEPROM ADDR TO BE PROGRAMMED *
* OR VERIFIED *
i* LSTADD - LAST EEPRON ADDR TO BE PROGRAMMED *
i OR VERIFIED
3* * f
1* OUTPUT: BC PAIR - BLOCK LENGTH *
3 *
LR 2R 2R 2 2R BE B 2 2R AR 2R 2 BN BN R N BN O B R R BN AR 2R B K SR B B B AR I R B J i
121 INITSBCT: 4
1261 ES PUSH HL sSAVE REES i
1262 3A 0509 LD A, (LSTADD) SRR R EEREEEEE i
1265 &7 LD H,A i* * !
126 34 050A LD A,(LSTADD+1) 3* *
129 6F LD LA 3 COMPUTE * i
12CA 34 0503 LD A, (NXTADD) 3% DBLOCK COUNTER * :
1200 47 LD B,A " *
12CE 3A 0504 LD A, (NXTADD+1) 3% *
1201 4F LD C,A * (IE, EC) *
1202 A7 AND A i* : *
1203 ED 42 SBC HL,BC 3% LSTADD - NXTADD + 1 *
120 23 INC HL * *
1206 44 LD B,H 3* *
1207 4D LD c,L HEXEEEENEEEN]
12D8 A7 AND A HEEREEEEEEEEEEERERENRER;
1209 21 0400 LD HL,BF¥RECSIZ ;% IS COMPUTED BLOCK COUNTER) 10247 »
12DC ED 42 S§BC HL,BC SRR I I IR XN
120E 30 03 JR NC, INTSRT sNO, 50 WE HAVE A SHORT BLOCK
12E0 01 0400 LD BC,BF¥RECSIZ 3YES,. SET BLOCK COUNTER TO MAX
1283 El INTSRT: POP HL $RESTORE REGS
1284 C9 RET
PAGE

Figure 15, EEPROM Programmer Software (page 35 of 37),

144

MACRO-80 3.34 17-Mar-80 PAGE 1-40

SR OE R R B R R R RN R E RN KRR R R R R ERE R K

4

% THIS ROUTINE CONVERTS A BYTE TO TWO ASCII CHARACTERS AND '
s PRINTS THEM ON THE CONSOLE. ¥
i* %)
s# INPUT: HL - POINTS TO BYTE T0 BE PRINTED % ;
3* * 1
s# QUTPUT: TWO WEX DIGITS ARE PRINTED ON CONSOLE %
3* ¥
;***l’l****‘l’******l*‘****l***!******
1285 PRTSBYT:
1285 FS PUSH AF sSAVE REGS
- 1286 (5 PUSH BC ..
1287 D5 PUSH DE 1
12E8 46 LD B, (HL) 1SAVE BYTE T0 BE PRINTED
1289 ED F RLD sLOAD REC A WITH 1ST HEX DIGIT
12EB CD 12F8 CALL PRT$DIG :G0 PRINT DIGIT ;
12EE ED 4F RLD sLOAD 2ND HEX DIGIT
12F0 CD 12F8 CALL PRT$DIG sC0 PRINT DICIT
12F3 70 LD (HL) ,B SRESTORE BYTE THAT WAS PRINTED
12F4 DI POP DE sRESTORE REGS
12F5 1 POP BC
12F6 F1 POP AF
12/ ©9 XET

s#&x CONVERT & PRINT A HEX DIGIT wx#

12F8 PRT$DIG:

12F8 E6 OF AND OFH 3GET RID OF HIGH OKDER GARBAGE
12FA FE 0A cp 0AH ;IS HEX DIGIT = 0 - 9
12FC 38 06 JR C,PRTSCS sYES

12FE D4 09 SuB 9 tNO, wxx CONVERT TO xx»
1300 F& 40 OR 0404 H %% ASCIT A - F wux
1302 18 02 JR PRTS$CS

1304 Fs 30 PRT$CS: OR 030K ;CONVERT TO ASCII ¢ - ¢
1306 OE 02 PRT$CS: LD C,PRTCHR HEREREER AR
1308 SF LD E,A 3% PRINT THE DIGIT #
1309 CD 00035 CALL CDOS SEEEEERREER R
130C €9 RET

END ENTRY$PT

Figure 15. EEPROM Programmer Software (page 34 of 37).

145

MACR0-80 3.34 17-Mar-80
Macros:
Symbols:
A$BSC2 107E A$B$CS 10B7 ASBSCE
A$BSER 1098 A$BSRT 10A3 ASSTOS
BLANK 0020 CCut 0080 couz
CDOS$D 0080 CI0 0001 CLSFL
CONBUF 050E CR 000D CRresC1
CRA$FT OFSB CRASNR OF45 CRAsSD
CRAFL 0014 CRESSF OF01 CURDK
DsCE 0004 D$CS QO0FE D$DN
D$OE 0002 D$OPR OEBE D$RA
DSKRUF 0540 ESCE 00FE £$CS
E$OPR 0D90 ENTRY$ 0100 ERASCF
ERASIC 1131 ERASRT 1177 ERR1
ERR3 03A% ERR4$0 03D2 ERR4$1
ERRS 0438 ERR4 044R ERR7
ERRADD 050B ERRCNT 050D FCB
FCBEX 0068 FCBFN 005D FCBFT
FCBNR 007C FCBRC 004B FLSTAD
GETSOP 0D44 IC$RA 1194 1C$RD
INTSRT 12E3 LF 000A LSTADD
MSG1 014C MSG2 01AD HSG3
MSGS 02684 MSG4 02B2 MSG7
MSGERA 033C MSGPRG 0344 MSGVER
NXTADD 0503 OLDSPF 0144 ONE
PsC1 0DBE P3C2 ODE8 P$DN
P$NI 0DCh P$OPR 0DA3 PCNTRL
POSSON 10F8 POS$F1 108D POSSNR
POSSRT 10FY PRGSNB 11DE FROGSI
PROMB 0021 PROMBF 0940 PROMC
PRTSBY 12E5 PRTS$CS 1304 PRT$C4
PRTCHR 0002 PRTEND 0024 PRTLN
RDSEF 1123 KRDSFIL 10FF RDS$RA
ROCHR Q001 RDFIL 0014 RDLN
SCSER 1025 SsCs0K 1051 S$KSER
SET$C3 OFD1 SET$CS 1008 SETSCN
SET$FA OFCY SET$KB 1029 SETSRT
STACK 0144 START 0D40 ys17
VsCi 0E32 VSDN 0EB3 VSES
V$0PR OE18 V$STAB 1178 VERSC2
VERSCS 128A VERSE4A 1269 VERS$IC
VERSRT 1245 WRFIL 0015 ZERO
No Fatal error(s)

Figure 15.

EEPROM Prograsmer Software (page 37 of 37),

PAGE

10BA
1054
0090
0010
OF2F
0F27
0019
OEF4
0EA8
0001
1165
0360
041E
04A8
005C
0065
0505
1182
0509
0188
02F2
0333
0001
0£0D
0023
10CE
1184
0022
1306
0009
1107
0004
1034
103F
1021
00F7
0E7B
1259
120F
0000

AsBSCO
BF
Chos
COLON
CRasC2
CR8$TA
DsC3
DSERRS
D$WA
E$OE
ERASE2
ERR?
ERR4$2
ERRS
FCBDK
FCBAP
FSTADD
INITSB
MAXERR
NSG4
MSG8
NEG1
OPNFL
PS$ES
PERIOD
POSSRD
PROMA
PROMD
PRT$DI
RD$C3
RD$RT
RECSIZ
SET$AD
SET$ER
SLASH
Uss
UsNI
VER$C3
VER$NB

146

10A4
0008
0005
003A
OF4B
OF4E
0EDé
QEED
QEBD
Q0FD
116E
0381
0434
04CA
005C
006C
0507
12Ct
0010
0259
0314
FFFF
000F
0E0S
002E
10E0
0020
0024
12F8
112
112D
0080
OF4E
1019
002F
0008
0E41
125D
123D

e — e+ et i -

ey

IV. User's Manual

The EEPROM Programmer described in the following manual
is an $-100 based peripheral device used to support HNVM 3008
EEPROM's. The hardware and its associated software executes

the following operations:

1. Erase,

2, Program,

3. Verify, and/or
4. Dump.

Operation of the Programmer is simple and requires only that
the user be able to log onto the system and initiate
execution of the program call EEPROM, Programmer software
prompts the user for subsequent inputs.

The Programmer operates on only one EEPROM at a time.
Jobs requiring more than one EEPROM are managed by software.
At appropriate times, software prompts the user to remove old
EEPROM's and insert new ones to continue operation. A result
of this method of operation is that the length of the longest
program that can be manipulated by the Programmer 1is
essentially unlimited,. However, another result is that
ordering of EEPROM insertions is critical, since operations

proceed from the low addresses to the high ones.,.

System Start~up

The following sequence describes how to get started with
the EEPROM Programmer.

1, Insure EEPROM Programmer card is seated in
the motherboard.

2, Flip the switch at bottom of zero insertion
force socket to "OFF", disabling the
Programmer.

3. Insure zero insertion force socket is empty.

4, Type "EEPROM" on console (ie, start program
execution).

5. Console will prompt for additional information.

khkhkkkkkkkxk

*% NOTE **
hkkkkkkkkkik

There are two times when it is safe to insert/remove
EEPROM's to or from the Programmer socket. One is when
prompted by the console., Another is when software prompts
the user to perform any operation. At these times the
software disables the 20V power supply, thereby reducing the

chances of destroying a EEPROM,

Commands

After initiating EEPROM Programmer software, the console
prompts the user to eunter an execution command with the
following message:

WHAT OPERATION DO YOU WISH TO PERFORM?
E(R)ASE, (P)ROGRAM, (V)ERIFY, (D)UMP, OR E(X)IT

To execute any one of the five listed communds, the user must
enter the letter contained within the parentheses of the

desired operation.

Together the four commands - Erase, Program, Verify, and
Dump ~ provide a flexible system for supporting HNVM 3008
EEPROM's., The Exit command is provided for easy return to
the operating system. The following discussion describes the

first four commands in more detail.

Jtst
)

ASE. This command is the simplest of the four,

requiring only the EEPROM to be erased. Its execution
destroys data held in a EEPROM by clearing all bits to zero.
PROGRAM. This command is used to program one or more
EEPROM's. Programming of a EEPROM is accomplished by:
1. erasing EEPROM contents, S
2. re-writing appropriate bytes, and '
3. checking the new contents,
Programs to be dumped to EEPROM(s) must reside on &8 floppy
disk file and be in the format of a .COM file. COM is the
default file extension used by CDOS to indicate an executable
program, For files longer than one kilobyte, the console
instructs users to change EEPROM's as one is filled and
others remain to be filled. Programming continues until
either end-of-file is encountered, or the last user specified
EEPROM address is written.
Note, when programming EEPROM's for use with the IFPDAS,
the origin of software linked into a COM file should be

hexidecimal address O00OOH. This address corresponds to the

physical beginning of the EEPROM address space within the IR.

The last EEPROM address is I1FFFH.
To simplify recovery from errors encountered during

programming, the Program command allows for calculating

149

relative starting points. That is, programming can begin at
some point within a disk file instead of always starting at
the first byte. Relative starting points are calculated from
user responses to questions about the starting address of the
program on the disk file, and from the first EEPROM address
to be programmed.

This programming flexibility places several restrictions
on Programmer software, The first one is that the starting
address of programs on a dis¥ file must be on a kilobyte
boundary. In addition, the first EEPROM address to be
programmed must also be on a kilobyte boundary. In effect
this means that programming can not start in the middle of an
EEPROM. Another restriction is that the first EEPROM address
to be programmed must be greater than or equal to the
beginning address of the program on the disk file. Finally,
the last EEPXOM address to be programmed must be greater than
or equal to the first EEPROM address.

The following example illustrates the relative starting
flexibility described above. A user wishes to program a
series of EEPROM's from a disk file which starts at
hexadecimal address 0000H and ends at 4082H. To accomplish
this the user would initiate the Program command and respond
to he console prompts as specified below:

FILENAME? filename

PLEASE ANSWER THE FOLLOWING QUESTIONS IN HEXIDECIMAL

NOTE: THE FIRST 2 ADDRESSES MUST BE ON KILOBYTE
BOUNDARIES

150

Tt i aae

STARTING ADDRESS OF PROGRAM ON FILE? O

FIRST ADDRESS TO BE PROGRAMMED/VERIFIED? (return)

LAST ADDRESS TO BE PROGRAMMED/VERIFIED? 4082 .

Note that a "RETURN" may be entered as the first address to
be programmed when it is equal to the starting address of the
program on file.

In this example programming proceeds error-free until
software detects an error at address 4055H, At this point
the first 16 EEPROM's were properly programmed. Therefore,
programming can proceed from the 17th EEPROM (ie, from
address 4000H). So, to continue programming at the 17th
EEPROM the user would again perform a Program operation with
responses to console prompts as specified below:

FILENAME? filename

PLEASE ANSWER THE FOLLOWING QUESTIONS IN HEXIDECIMAL

NOTE: THE FIRST 2 ADDRESSES MUST BE ON KILOBYTE

BOUNDARIES

STARTING ADDRESS OF PROGRAM ON FILE? O

FIRST ADDRESS TO BE PROGRAMMED/VERIFIED? 4000

LAST ADDRESS TO BE PROGRAMMED/VERIFIED? 4082 .

Barring continued, unrecoverable errors, the 17 EEPROM's will
contain the entire 4083 byte program; even though one was
reprogrammed.

VERIFY. This command is used to compare a disk file to
one or more EEPROM's, The result of the comparison 1is a
report that either the EEPROM's match the file or they do
not. If they don't match, up to 16 differences will be
illustrated and verification will terminate.

As implied in the previous paragraph, the verification

process may involve comparing more than one EEPROM against a

151

e 2

|
|

file which is larger tham one kilobyte. In these cases
. software prompts the user to change EEPROM's at appropriate
times. During this change, the user must be aware of the

order in which the EEPROM's are inserted for verification,

; The order of comparison is from the EEPROM with the lowest
physical address to the one with the highest, Logically this
order corresponds with the direction in which the disk file
is read.

As was the case with the program command, the verify

command allows relative starting addresses. Relative

DT

addressing is accomplished in the same manner for both the
verify and program commands, with appropriate subroutines
being shared between them.

As an example of where the relative addressing facility
would be used, consider the following scenario. The fourth
and fifth EEPROM's within a six kilobyte program are
suspected of being swapped. So, to find which is the fourth

EEPROM, on2 is chosen and compared to the O0COOH to OFFFH

address space of the program contained on the disk file.

Assuming that the program on the disk fiie starts at address
0, the user would initiate the Verify command and respond to
console prompts as specified below:

FILENAME? filename

PLEASE ANSWFR THE FOLLOWING QUESTIONS IN HEXIDECIMAL

NOTE: THE FIRST 2 ADDRESSES MUST BE ON KILOBYTE

BOUNDARIES
STARTING ADDRESS OF PROGRAM ON FILE? O

FIRST ADDRESS TO BE PROGRAMMED/VERIFIED? €00
LAST ADDRESS TO BE PROGRAMMED/VERIFIED? FFF .

The result of these responses is that the chosen EEPROM is
compared to the fourth kilobyte (decimal - 3072 to 4095) of
the program on the disk file. If verification completes
without errors then the chosen EEPROM is indeed the fourth of
the sequence.

UMP. This command is used to dump one or more EEPROM's
to a disk file, In this way a floppy disk file cam be

created to contain the contents of a set of EEPROM's.

%k %k Kk Kk ok kkkkkk

** NOTE **
kkhkkkkhkhkkkx

Since the dump command creates a new disk file to hold
EEPROM(s) data, a user response to the software request for a
filename must be a unique file.

Usually programs are larger than one kilobyte and
stretch across several EEPROM's. Still one file can be
created to hold an entire program., The dump command allows
for dumping sequences of EEPROM's by asking:

DO YOU HAVE MORE EEPROM'S? (Y/N)
after the dumping of each EEPROM is completed. To include
another EEPROM in the dump sequence the user replies with a
"Y", Software will instruct the user what to do next. Note
also that the program sequence on the disk file is entirely
determined by the order in which EEPROM's are inserted in the
the Programmer socket. The first EEPROM appears first on the

file.

153

cncbiions

-

Errors

EEPROM Programmer software recognizes many user errors.
When an error occurs, a message is printed, execution of the
current command ceases, and program control is returned to
the Programmer command entry level, At the command entry
level the user can retry the erroneous command, or try a
different command. Error messages and some of their causes
are:

FILE COULD NOT BE CREATED - disk directory is full or
requested file already exists;

FILE NOT FOUND - the requested file name is not
on the specified disk;

DISK RECORD COULD NOT BE WRITTEN - either the directory
is full or no more file space is available;

DISK READ ERROR OR UNEXPECTED EOF - an attempt to read a

disk record resulted in an error with no record
transferred;

PROM DID NOT ERASE - the current EEPROM can not be
cleared to zero's;

VERIFY ERROR -~ data contained on the disk file and in
the current EEPROM do not match;

RELATIVE MAGNITUDE OF ADDRESS IS INVALID - beginning
addresses must be less than ending addresses;

INVALID ADDRESS - addresses must be in hexidecimal; some
addresses must also be on kilobyte boundaries,.

154

Appendix C

MBM Interactive Development System

Contents

I. INEroduction « o« o o o o s o« o« o o o o o o o &+ + o 156
ITI. S-100 Interface . o « o o o o o« o o o o o o o o o = 157
III. Software - . - - . - 161

MIDS Software .« « o o« o o o o o o o o o o o o o o 162
MBM Software . . o &« ¢ ¢ s o o o s o o o o o o o 196

IV, User's Manual o« « « « o o « o o o o o o o o o o o o« 228

System StArt=uUP .« + o o ¢ s o o o o o o o o o o o o 228
Command SUmMMATrY o+ . o « « « o o o « o s o o o o o« o 229
Display Command Menu . . . + « « + o « s « « o 230
Initialize MBM Buffer ¢« + &« o+ « « « « 230
Set Interrupt I/0 Processing . « « « « « o « 230
Set Polled I/0 Processing .+ « o« o o « « « o o 230
Print MBM Buffer on Console . . . « . « « . + 231
Read BMC Address Register (and Print) 231
Read FIFO (and Primt) . . . o ¢ ¢ o« o o o o o« 231
Print BMC Status . « « « « o« « o« o o o o » o » 231
Set BMC Register Values . . . o+ ¢« « & « o« o« - 231
Print BMC Register Values . .+ + o« o« o + o » o 232
Write FIFO o« & 4 o o o o o 2 s o o o o o o o = 233
Exit to CDOS . . ¢ ¢ 4 & & « o o o o o o o o « 233
Command Features . . + o« o« & o o o o o o o o o « « 233
MBM Initialization . « ¢ « o « « o o o o o« o o« o« « 234
Interrupt Processing .« « 4 « « o o o o o o o o o« o« 234
EXTOTS & & o o o o o o o o s o o o s s s s o o o« « 235

155

MBM Interactive Development System

I. Introduction

This Appendix documents operation of the MBM Interactive
Development System (MIDS), designed to support Intel 7110
MBM's. Documentation consists of an Intel BPK=-72 to S=-100

hardware interface schematic, and MIDS software listings.

Following the listings 1s a user's manual which describes the
System's capabilities and summarizes its operating
procedures. Before using MIDS, users must be familiar with
MBM operating characteristics as outlined in the BPK=-72

Bubble Memory Prototype Kit User's Manual (Ref 2).

MIDS is a flexible tool for supporting Intel 7110 MBM's.
This flexibility results from two design considerations. One
is that the hardware is based on the S-100 bus. Another is
that software runs under control of the Cromemco Disk
Operating System (CDOS) and consequently the Control Program
for Microprocessors (CPM) Operating System. Further
explanations of these design decisions are contained in

following sections of this document.

156

IT. S-100 Interface

Adaptation of the BPK-72 bus structure to the S-100 bus
is illustrated in the schematic diagram of Figure 16. To
facilitate understanding of the schematic, Table XIV lists
the functions of the IC's used to construct the bus interface.
More detailed information on individual IC's is available

from The TTL Data Book (Ref 28),

The BPK-72 to S-100 interface is assembled on an §S-100
wirewrap card. Attached to the card is a 44 pin connector
for seating the BPK=-72, This construction allows easy
transportation of MBM hardware to any $-100 based system,.
Another aid to tramsportability is the full buffering of the
interface circuitry to present only a single TTL load to the
§-100 bus. Table XV lists the subset of 5-100 pins required
by the BPK-72.

Yet another aid to transportability is the onboard
switch selection of the seven most significant bits of the
MBM peripheral port addresses. This allows MBM hardware
addresses to be chosen which do not interfere with the
permanent I/0 addresses of the host computer. These

addresses are selected by opening and closing appropriate

switches., Closed switches indicate zero bit settings, and

open switches indicate ones. The most significant address

157

TABLE XIII

Selectable MBM I/0 Ports

Port Address Function
BBBB BBBO Bi-directional Data Bus
BBBEB BBB1l Command Port (output only)
BBBB BBBI1 Status Port (input only)

- - - — Y T R = - D e D e D T D e e S e mm E — em m Ne — w= —

bit corresponds to pin 1 of the IC socket that houses the
address swithes.

Table XIII lists MBM port addresses and their related
function., The least significant bit of the addresses 1is
hardwired. The user selectable bits are denoted with B's.
When setting these B's, be sure that corresponding changes

are made to MIDS software.

TABLE X1V

BPK-72 to S5-100 IC Listing

- - S et G e S Y T S N e - e - —

Device Functional Schematic
Type Designation Reference
7402 Quad 2-input NOR Gates Ul
7404 Hex Inverters u2
714244 Octal Buffers U3
8216 4-bit Bidirectional
Bus Driver U4,U5
7485 4-bit Magnitude Comparator U6,u7
TABLE XV
BPK=72 to S$-100 Interface Definition
§-100 Signal §-100 Signal
Pin Function Pin Function
1 +8V 73 INT
2 +18V 75 RESET
25 CLK (4 MHz) 79 Addr 0
29 Addr 5 80 Addr 1
30 Addr 4 81 Addr 2
31 Addr 3 82 Addr 6
35 Data Out 1 83 Addr 7
36 Data Out O 88 Data OQut 2
38 Data Out 4 89 Data Out 3
39 Data Out 5 90 Data Out 7
40 Data Out 6 91 Data In 4
41 Data In 2 92 Data IN 5
42 Data In 3 93 Data In 6
43 Data In 7 94 Data In 1
45 ouT 95 Data In 0
46 INP 96 INTA
50 GND

159

75 > ALY AR H
AU
1>ttt ——— Mt;i’ _—‘@‘-‘h IR—<s
48 e OUIT" | b SR
#6010 —LH 0 50! M —u
RO == |0
S o 8 INT =N
9 ORQ e M
% Y &
m T SE
NS 2z) 07 =i
& % g
i =
4 N7 o \ Ul OB —r
018 ind jl / ur 2
= :
:]
o o
L — / %)
‘{ 01e (] L]
3 + .
31 = ue W* 3% L o
é; = - }Db = L ol NC
a5 3”{ —1 [a5 qure |
/--H A — AS 7 .
SN 1 04{‘;_\ y 4 e
L~ 6 gIN9T
i 3 L .74 < n
z Br— el a7
o = |
4 L 2 1 r—
2
i <~ < —)
f 8 3z .ge7
; Lg k. us J uz
5 N oz LA — Fue \
go -1 L ’ a 7007(i
r-13 <
|, — !
T DJZ . I«H ’IL
Di{ L A2 :‘m%
i) / L 83 -
Lq s aa J
e J
! g 3 R —L
a7) N -8 z
N - =
9 - :
_ B S
1 g T .l. 3o e F
30 ooer =
Z>r=cis T.LTJ. ,1' REG rI §
s a0 — T T l_-w-ég'
——zg—e

Figure 16. BPK=-72 to S-100 Interface Schematic.

160

I1I. Software

The MIDS software listings are attached. The first
listing, Figure 17, supports the interactive feature of MIDS
by accepting and directing user requests for system
operations. The second listing, Figure 18, is a subprogram
containing MBM driver routines, Both programs were written
in Z-80 assembler language with system calls to CDOS for I/O
support.

Because CDOS system calls are restricted to those
between 1 and 27, the software is transportable to CPM based
systems without modification. This transport feature results
from identical execution of the operating systems for calls

in the range of 1 to 27.

MACRD-80 3.36 17-Mar-80 PAGE 1
N .280
i 0000 ASEG

| ORG 100H

; ;TITLE: MIDS - MBM INTERACTIVE DEVELOPMENT SYSTEM

$AUTHOR: CAPT R E MEISNER

;DATE:

$SYSTEM: CROMENCO Z2D / CDOS 2,36

$DESCRIPTION: THIS PROGRAM IS AN INTERACTIVE DEBUGGER FOR

3 THE INTEL 7110 MAGNETIC BUBBLE MEMORY (MBM).

| JOPERATION: THIS PROGRAM COMTAINS THE INTERACTIVE ROUTINES
FOR COMMUNICATING WITH AN MBM DEBUGGER USER,
T0 OPERATE IT MUST BE LINKED TO APPROPRIATE MEM
DRIVER ROUTIMES. DRIVERK ROUTINES ARE CONTAINED
IN MBM.REL, AN OBJECT FILE OF THE FOLLOWING
ROUTINES.

EXTRN MBMSSTAT

EXTRN MBMSICLR

EXTRN MBMSISET

EXTRN MBMSWBRN

EXTRN MBNSINIT

EXTRN MBNSREAD

EXTRN MBMSWRIT

EXTRN MBMSRSEK

EXTRN MBMSRXBR

EXTRN MBMSWXBR

EXTRN MBMSWZBL

EXTRN MBMSRFSA

EXTRN MBMSABRT

EXTRN MBMSWSEK

EXTRN MBMSRZBL

EXTRN MBMSRCDT

EXTRN MBMSFFRE

EXTRN MBMSPURG

EXTRN WBMS$SKES
IN ADDITION, MBM.REL CONTAINS THE FOLLOWING
COMMON VARIABLES:

EXTRN MBMSBMCR

EXTRN MBM$PSIZ

- B ps S sy

-s we

PAGE

Fiqure 17, MIDS Software (page 1 of 34).

162

MACRO-80 3.36 17-Mar-80 PAGE 1-1

DICTIONARY: THE FOLLOVING IS A LIST OF SOME OF THE

ABREVIATIONS USED IN THIS SOURCE LISTING.

ELR - BLOCK LENGTH REGISTER

BMC - BUBBLE MEMORY CONTROLLER

BUF - BUFFER

CHAR - CHARACTER

CNTR - COUNTER :

ICD - INTERNALLY CORRECT DATA (MBM COMMAND)]

INIT - INITIALIZE

LSB - LEAST SIGNIFICANT BIT/BYTE

MBM - MAGNETIC BUBBLE MEMORY

MSB - MOST SIGNIFICANT BIT/BYTE

NBR - NUMBER

PNIR - POINTER

RCD - READ CORRECTED DATA (MEM COMMAND)

REC - REGISTER

XFER - TRANSFER

-e

PP A gy PO s AP PP SE P P SP WP W SP S S

PHRHHEEHHEHHEEEE. CONSTANTS #HEMERERHEOHERREE R

FFFF NEGI EQU -1

0000 IERO EQU 0

0001 ONE EQU i

0002 TWO EQU 2

0003 THREE EGQU 3

0004 FOUR EQU 4

000D CR EQU ODH 3ASCII CARRAIGE RETURN
000A LF EQU 0AH 3ASCIT LINE FEED

0057 YES EQU Y y##% YES/NO RESPONSES #¥%
004E NO EQU N’ jexx 10 USER PROMPTS wx«
0020 SPACE EQU t

0055 FILLER EOU 55H ;FILL CHAR FOR FIFO EUF

sMBM REGISTER ADDRISS COUNTER (RAC) ASSIGNMENTS

000E ADRO EQU OEH 3ADDRESS REG (LSB)
000F ADR1 EQU OFH JADDRESS REG (MSB)
0000 FIFO EOU 00H sFIF0 1/0 REG

sMBM CONTROLLER (BMC) STATUS REG BIT POSITIONS

0005 OPFBPS EQU 5 ;0P FAIL
0004 0PCBPS EQU 4 ;0P COMPLETE

Figure 17. MIDS Software (page 2 of 34),

183

0007

0000
0001
0002
0003
0004
0005
0006
0007

0020
0040

0028
002y

0005
0001
0002
0009
000A
0024

0100
0103
0106

MACRO-80 3.36

0D 0A 24
0D 0A 0A
20 20 20 57

17 -Mar-80

BSYBPS

PAGE

EQu

1-2

b
1

$BAC BUSY

BN CONTROLLER (BMC) ENABLE REG BIT POSITIONS

INBPS
1EBFS
DHABPS
XFRBPS
WBLBPS
RCDBPS
ICDBPS
IPBPS

EQU
EQU
EQU
EQU
EQU
Equ
EQU
EQU

NO-UVaWh O

$INTERRUPT ENABLE (NORMAL)

s INTERRUPT ENABLE (ERROR)

;DMA ENABLE

sMAX FSA TO BMC XFER RATE

sWRITE HOOTLOOP ENABLE

;ENABLE READ CORRECTED DATA
sENABLE INTERNALLY CORRECTED DATA
sINTERRUPT ENABLE (PARITY)

sMBM CONTROLLER ENABLE REG BIT SETTINGS

RCDBIT
ICDBIT

EQU
EQU

20H
40H

yOTHER MBM RELATED CONSTANTS

BN$DATA EGU

BM$CHD

EQU

28H
29

;CDOS SYSTEM CALL PARAMETERS

CDas
RDCHR
PRTCHR
PRTLN
RDLN
PRTEND

EQU
EQU
EQU
EQU
EQU
Eat!

0005H
1

2

¥

10
‘g

{CONSOLE MESSAGES

CRLF: DB
PREMSG: DB
DB

Fiqure 17,

CR,LF,PRTEND
CR,LF,LF

WELCOME TO THE INTEL 7110 INTERACTIVE DEBUGGER'

sREAD CORRECTED DATA
sINTERNALLY CORRECT DATA

;DATA 1/0 PORT
;COMMAND OUT PORT

3CD0S ENTRY POINT

sREAD A CHAR FROM THE CONSOLE
{WRITE A CHAR TO THE CONSOLE
sPRINT BUF LINE ON CONSOLE

sREAD LINE FROM CONSOLE INTG BUF
sEND PRINT BUF PNTR

MIDS Software (page 3 of 34),

164

0137
0134
014F
0171
0142
0145
01D
010D
01EA
0200
022E
023F
0257
0282
029C
0248
02cC
02EA
02F8
0323
034E
0379
03A4
03C7
03E0
03FC
041E
043D
0458
0470
049F
0479
04CE
04CE
04E0
04E0
04F2
04F2
0504
0504
0516
0515
0528
0524
0548

0D 0A 0A

41 4E 59 54
oD 04

20 20 20 20
0D 0A 0A

54 48 45 20
0D 0A 24

0D 0A 43 4F
0D 0A 09 20
0D 0A 09 20
20 20 3€C 3C
20 20 3C 3C
20 20 3C 3C
09 0y 09 20
20 20 53 54
0D 0A 09 4E
0D 0A 04/ 09
28 59 2F 4
0D 0n 09 20
0D 0A 09 20
0D 0A 09 20
0D 0A 0% 20
0D 0A 0A 09
50 45 52 49
0D 0A 04 09
0D 0A 09 52
20 20 49 4E
0D 0A 09 09
20 20 42 4D
20 20 4E 4F
43 4F 4D 4D
0D 0A 09 4F

0D 0A 20 20
0D 0A 20 20
0D 0A 20 20
0D 0A 20 20
0D 0A 20 20
0D 04

09 09 24 2A
30 20 20 20

MACRO;-80 3.36 17-Mar-80

PROMPT:
CMDERR:
INPERR:
BSYWRN:
OPCNPL:
OPERR:

STATHD:
BLKMSG:
ENIMSG:

ENZM5G:
EN3NSG:
ENSMSG:
ENGMSE 2
REIMSG:

MSC4$1:
nSG4%2:
NSGIs1:
BSGI%2:
L 1NTH

DESHSG:

STADDR:
BLRONMSG

BLRIMSG
ENRMSG:
ADROMSE
ADRIMSG

MENU:

Figure 17,

PAGE

DB
DB
DB
)]
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
Db
DB
0B
DB
DB
)]

DB

DB
DB
DE
DB
DB
DB

1-3

CR,LF,LF
"ANYTINE YOU WISH TO SEE A COMMAND MENU, TYPE H (HELP)'
CR,LF
‘ 10 RETURN TO CDOS, TYPE X (EXIT)’
CR,LF,LF
"THE SYSTEN IS CURRENTLY SET FOR POLLED 1/0 PROCESSING'
CR,LF,PRTEND
CR,LF, CONMAND - * ,FRTEND
CR,LF,’ ##% ERROR *¥% INVALID COMMAND’ ,PRTEND
CR)LF," %% ERROR #s# INVALID INPUT' FRTEND
({(BUSY)»> ,PRTEND
({{ OP COMPLETE))) ' ,PRTEND
({¢ OP FAIL »)) CAUTION: KNC REGISTER',CR,LF
VALUES MAY BE INVALID' ,PRTEND
STATUS = *,PRTEND
CR,LF," NUMBER OF PAGES PER 1/0 BLOCK = *,PRTEND

CR,LF,LF,’ ENABLE NORMAL INTERRUFTS? °
“{Y/N/Return) ' ,PRTEND
CR,LF,’ INTERRUPT ON ERROKS? (Y/N/Return) ‘,PRTEND
CR,LF, MAXINUM TRANSFER RATE? (Y/N/Return) ‘' ,PRTEND
CR,LF,’ READ CORRECTED DATA? (Y/N/Return) ’,PRTEND
CR,LF,” [INTERNALLY CORRECT DATA? (Y/N/Return) ' ,FRTEND
CR,LF,LF,’ (®(x(x(%(x REINITIALIZING MBM -
'PERIPHERAL *)#)#)#}#)' ,CR,LF,LF,PRTEND
CR,LF,LF,’ WHICH BUBBLE? ‘,PRTEND
CR,LF)" RECORD NUMBER (3 HEX DIGITS)? ' ,PRTEND

INITIAL VALUE (1 HEX BYTE)? * ,PRTEND
CR,LF,’ INCREMENT (1 HEX BYTE)? ' ,PRTEND

BMC ADDRESS REG = ' ,PRTEND

NOTE: 1ST BYTE OF FIFO IS DESTROYED BY THIS
" COMMAND' ,CR, LF ,PRTEND
CR,LF,’ OPERATION STARTED AT MBM ADDRESS ' ,PRTEND

CR,LF,” BLR LSB = ‘,PRTEND
CK,LF," BLR NSB = ',FRTEND
CR,LF,” ENABLE REG : ' ,PRTEND
CR,LF,” ADR LSB = ',PRTEND
CR,LF,” ADR MSB = ',PRTEND
CRLF

wexx BN COMMAND NENU »#%#x’ ,CR,LF,LF
'0 - WRITE BOOTLOOP REGISTER MASKED

MIDS Software (page 4 of 34),

165

MACRO-80 3.36 17-Nar-80 PAGE 1-9]
0570 31 20 2D 20 DB ‘1 - INITIALIZE® ,CR,LF d
0580 3220 20 20 DB "2 - READ BUBBLE ’
0597 33 20 2D 20 DB ‘3 - WRITE BUBBLE' ,CR,LF
0549 34 20 2D 20 DB ‘4 - READ SEEK
0SBE 35 20 2D 20 DB ‘S - READ BOOTLOOP REGISTER® ,CK,LF
050A 36 20 2D 20 DB "6 - WRITE BOOTLOOP REGCISTER
05FB 37 20 2D 20 DB "7 - WRITE BOOTLOOP,CR,LF
060F 38 20 2D 20 DB '8 - READ FSA STATUS ‘ b
0629 39 20 2D 20 DB ‘9 - ABORT' ,CR,LF
0534 41 20 2D 20 DB ‘A - WRITE SEEK
064A 42 20 2D 20 DB ‘B - READ BDOTLOOP’,CR,LF
0550 43 20 2D 20 D8 ‘C - READ CORRECTED DATA
047 44 20 2D 20 DB ‘D - RESET FIFO',CR,LF
0588 45 20 2D 20] "E - MBI PURGE
06R0 46 20 2D 20 DB ‘F - SOFTWARE RESET,CR,LF,LF
04B5 48 20 2D 20 DB "H - DISPLAY COMMAND MENU
06D3 49 20 2D 20 DB ‘1 ~ INITIALIZE MBM BUFFER’,CR,LF
06EE 44 20 2D 20 DB "J - SET INTERRUPT I/0 PROCESSING ’ 3
0713 4B 20 2D 20 DB 'K - SET POLLED I/0 PROCESSING',CR,LF :
0732 50 20 2D 20 DB ‘P - PRINT MBM BUFFER ON CONSOLE) o
0757 512020 20 DB ‘Q - READ BNC ADDR REG (AND PRINT)',CR,LF
0774 52 20 2D 20 DB ‘R - READ FIFG (AND PRINT))
0799 3320 2D 20 DB 'S - PRINT BMC STATUS' ,CR,LF
07aF 55 20 2D 20 DB ‘U - SET BMC REG VALUES
07CC 56 20 2D 20 DB 'V - PRINT BRC REG VALUES',CR,LF
0786 57 20 2D 20 DB "W - WRITE FIFO
O7FC 58 20 2D 20 DB "X - EXIT 10 CDOS’ ,CR,LF,PRTEND

sepeneeanne END CONSTANTS BHEEEEHIEEEHHHHHHRHEENHHHEEEE

SO UARTABLES HH0EHHERHHEEHHHEHEEHEEHERHEHEHEOHO

080F 00 INTFLG: DB 0 sINTERRUPT ENABLED FLAG

00CC BUFLEN EQU 204D sLENGTH OF MEW 1/0 BUFFER

0810 MBMBUF: DS 204D sMBM 1/0 BUFFER

08C 50 COMBF: DB 80D sBUFFER LENGTH

08D 00 DB 0 sNBR OF CHAR READ i
08DE DS 80D sCONSOLE INPUT BUFFER

PO END VARIABLES H¥¥siiititttit ittt HHHEHHEHHEH
PAGE

Figure 17, MIDS Software (page 5 of 34),

186

MACRO-80 3.36 17-Nar-80 PAGE 1-14
092E ED 73 0978 START: LD (0LDSP) ,SP 3SAVE OLD STACK PNTR
0932 31 0978 LD SP,STACK ;INIT NEW STACK
0935 €3 0974 JP CONTINUE
0938 s 64 144 BYTE STACK
0978 STACK EQU $ 3TOP OF STACK
0978 0000 OLDSP: DW 0 ;0LD STACK PNTR SAVE AREA
3
0974 CONTINUE:
[0974 OE 09 LD C,PRTLN IR EEREREE NN
{' 097C 11 0103 L DE,PREMSG 3* PRINT PREAMBLE
| 097F CD 0005 CALL CDOS NEEEEERERRERR
| 0982 GETSOPR:
’ 0982 OE 09 LD C,PRTLN PR KR KK KKK KK KKK KK
0984 11 01DD LD DE ,PRONPT 1% PROMPT USER WITH COMMAND - &
0987 CD 0005 CALL CDOS NEEEEEEEEEREREEE RN
0y84 OE Of LD C,RDCHR ;%% GET USER »xx
098C €D 0005 CALL CpOS y%%% RESPONSE %
098F FE 30 cp 0
0991 CC 0A77 CALL Z,0PR$0 sWRITE BOOTLOOP REG MASKED
0994 CA 0982 Jp Z,GETSOPR
0997 FE 31 ce Y
0999 CC 0A85 CALL Z,0PR$1 JINITIALIZE
099 CaA 0982 JP Z,CETSOPR
099F FE 32 cp 2
09A1 CC OABE CALL Z,0PR$2 ;READ DATA
09A4 CA 0982 JP Z,GET$0PR
0947 FE 33 Ccp ‘3
09A7 CC 0AB2 CALL Z,0PR$3 $WRITE DATA
094C CA 0982 JP Z,GET$OPK
09AF FE 34 ce ‘A
0981 CC 0ACB CALL Z,0PRs4 sREAD SEEK
0984 CA 0982 JP 1,GET$0PR
0987 FE 35 ceP ‘5
0989 CC 0ADB CALL Z,0PR$5 yREAD BOOTLOOP REG
09BC CA 0982 JeP Z,GET$OPR
i Figure 17, MIDS Software (page 4 of 34),
!
*j 167

09BF
09C1
09C4

09¢C7
09C9
09CC

09CF
0901
0904

0907
09D9
09DC

09DF
09EL
09E4

09E7
09E9
09EC

09EF
09F1
09F4

09F7
09F9
09FC

09FF
0A01
0A04

0A07
0409
0AOC

OAOF
0AL1
0A14

0A17
0ALY
0A1C

MACRO-80 3.34

FE 36
CC OAE?
Ca 0982

FE 37
CC 0AF7
€A 0982

FE 38
CC 0800
CA 0982

FE 39
CC 0BOY
CA 0v82

FE 41
CC 0B12
CA 0982

FE 42
CC 0B22
CA 0982

FE 43
€C 0B2B
Ca 0982

FE 44
CC 0B34
Ch 0982

FE 45
€C 0B3D
CA 0982

PE 44
£C 0B46
CA 0982

FE 48
CC 0B4F
CA 0982

FE 49
CC OB3E
CA 0782

17 -Mar-80 PAGE

ce
CALL
JP

cP
CALL
JP

cp
CALL
JP

ce
CALL
JpP

CALL
JP

cp
CALL
JP

cp
CALL
JP

cp
CALL
JpP

cp
CALL
JP

cp
CALL
JP

cp
CALL
JP

cp
CALL
Jp

Z,0PR$6
Z,GET$OPR

.y
1,0PR$7
Z,GETSOFR

g
7,0PR$8
7,GET$OPR

rgr
Z,0PR$?
Z,GETS$OPR

‘A
1,0PR$A
Z,GET$0PR

-
7,0PR$B
Z,GET$OFR

o
Z,0PRsC
1,GETS$OPR

0
Z,0PRSD
Z,GET$0PR

"
Z,0PR$E
2,GETS$OPR

g
7,0PRSF
7,GETSOPR

"
Z,0PRSH
7,GET$OPR

o
7,0PRS1
7,GETS0PR

sWRITE BOOTLOOP REG

sWRITE BOOTLOOP

sREAD FSA STATUS

sABORT

$WRITE SEEK

sREAD BOOTLOOP

sREAD CORRECTED DATA

3RESET FIFO

{MBN PURGE

1SOFTWARE RESET

JHELP

sINITIALIZE MBM BUFFER

Figure 17, MIDS Software (page 7 of 34),

148

0ALF
0A21
0A24

0A27
0A29
0AZC

OAZF
0A31
0A34

0A37
0A39
0A3C

0A3F
0A41
0A44

0A47
0A49
044C

QA4F
0A51
0AS4

0AS7
0A59
0A5C

0ASF
0AsL
0As4

0As7
0A69

0A4C
OASE
0471
0A74

NACRO-80 3.36

FE 44
CC 0BDO
CA 0982

FE 4B
CC 0BDB
CA 0982

FE 50
CC OBES
CA 0v82

FE 51
CC 0Cs1
€A 0982

FE 52
CC oca7
CA 0982

PE 53
CC 047
CA 0982

FE 55
CC 0CB4
CA 0982

FE 54
CC OCDF
CA 0982

FE 57
CC 0p2C
CA 0982

FE 58
CA 0D40

0E 09

11 O1EA
tD 0005
€3 0982

17-Nar-80

PAGE

Fiqure 17,

PAGE

cp
CALL
JP

cp
CALL
JP

cp
CALL
JP

ce
CALL
J

ce
CALL
JP

cp
CALL
JpP

cp
CALL
JP

ce
CALL
JpP

cp
CALL
JE

cp
JP

LD
LD
CALL
Jp

Z,0PRS$J
Z,GET$OPR

lxl
Z,0PR$K
Z,GET$0PR

P
1,0PRSP
7 ,GET$OFPK

»
7,0PR$Q
7,GET$OPK

R
Z,0PR$R
Z,GET$OFR

lsl
1,PRTSBNS
Z,GET$OPR

o
Z,0PRsU
1,GETSOPR

"y
7,0PR$Y
Z,GET$OPR

»
Z,0PR$W
7,GET$OPR

le
7,0PR$X

C,PRTLN
DE, CMDERR
CDOS
GET$OFR

sSET INTERRUPT I/0 PROCESSING

3SET POLLED 1/0 PROCESSING

sPRINT WBM BUFFER

;PRINT BHC ADDR REG

sREAD FIFO

yPRINT BMC STATUS

sSET BMC REGS VALUES

3PRINT BMC REG VALUES

sWRITE FIFOQ

1EXIT

HEREEEEEEEE

3¥ INVALID COMMAND #
SEEEREERERE R

MIDS Software (page 8 of 34),

1469

"

NACR0-80 3.36 17-Mar-80 PAGE 1-17

JHEME K BB R K OE K KKK KB KEN

y#% WRITE BOOTLOOP REG MASKED xx%
THEE K B K R N K K K K KK K B NEE

0A77 FS OPR$0: PUSH AF
0A78 ES PUSH HL
0479 21 0810 LD HL ,#BMBUF $SET PNTR TO MBM BUF
i 0A7C CD 0000% CALL MBMSWBRN sWRITE BOOTLOOF REG MASKED
0A7F CD 0D47 CALL PRT$BNS sPRINT MBRM STATUS
0a82 Et popP HL
0A83 H pop AF
0A84 €9 RET

TERE R R B R OR E HMR
yexe INITIALIZE #4x
NUREERR RN

0A85 F5 OFR$1: FUSH AF

0”84 CD 0000% CALL MBMSINIT ;INITIALIZE

0489 CD 0D47 CALL PRTSBMS sPRINT MBN STATUS
0A8C F1 POP AF

0A8D C9 RET

FHHE % X % X # %%

y%e% READ DATA #xx
FHEE X B B X % HME

0ABE F5 OPR$2: FPUSH AF

0a8F C5 PUSH BC

090 E5 PUSH HL

0A91 3E 55 Lb A,FILLER yINIT FILL CHAR
0A93 06 CC LD B,BUFLEN 3 LOOP CNTR
0A95 21 0810 LD HL ,NBMBUF i BUF PNTR

0A98 77 LD (HL),A HEREEEEEER
0A99y 23 INC HL 3% FILL THE BUF ¥
0A%4 10 FC DINZ $-2 HEEENEEEE
0A9C ED 4B 0003* LD BC, (WBMS$EBMCR+3) 3GET STARTING PAGE NBR
0AR0 21 0810 LD HL ,MBMBUF jLOAD INPUT BUF PNTR
0AA3 CD 0000# CALL MBMSREAD ;READ MBM PAGE(S)
0AAs CD 0D47 CALL PRTSEMS PRINT MEM STATUS

Figure 17, NIDS Software (page ¢ of 34).

170

NACRO-80 3.36 17-Mar-80 PAGE 1-18

0AR9 40 LD H,B yhee PRINT e
0ARA &Y LD L,C s¥4% READ x»
0AAB CD 0D84 CALL FRTSAD jexn START ADDR %x
0AAE El popP HL

0AF C1 POP BC

0ABO F1 PoP AF

0ABt C9 RET

RN EERE R

3##% WRITE DATA wxx
FHEE B R X R R B HER

0AB2 FS OPR$3: PUSH AF o

0AB3 (5 PUSH BC)

0AB4 E5 PUSH HL 1
{

0ABS ED 4B 0003x LD BC, (MBM$BNCR+3) ;GET STARTING PAGE NBR » %

0ABY 21 0810 LD HL ,MBMBUF sLOAD OUTPUT BUF PNTR |

OABC CD 0000 CALL MBMSWRIT SWRITE A PAGE

OABF CD 0D47 CALL PRTS$EMS sPKINT MBN STATUS |

0AC2 40 LD H,B jése PRINT wwx o

0AC3 &9 LD L,C ;eex WRITE wx ‘

0AC4 CD 0D84 CALL PRTSAD %k START ADDR #ax

0AC7 E1 POP HL

0AC8 C1 POP BC

0ACY Fi POP AF

0ACA C9 RET

PAGE

Figure 17, MIDS Software (page 10 of 34),

171

MACRO-80 3.36 17-Mar-80 PAGE 1-1% 1

R R K % KK NEX
jex# READ SEEK »¥#
SEEE X B % % K KK

0ACB FS OPR$4: PUSH AF
i
OACC CD OED7 CALL SETADR 3SET BNC ADDR KEG VALUES
0ACF FEFF CP NEGI sINVALID INPUT?
0ADI 28 06 JR Z,04¢RT $YES
0AD3 CD 0000% CALL MBMSRSEK ;60 SEEK
0AD6 CD 0D47 CALL PRTSBMS sPRINT NEM STATUS 4
0ADY Fi 04$RT: POP AF
0aDA 9 RET 1

THEE R R B K X R B X HEX

y### READ BOOTLOOP REG wx |
SUEEEERERENE

0ADB F5 OPR$5: PUSH AF

0ADC E3 PUSH HL

0ADD 21 0810 Lb HL ,MBMBUF $SET BUF PNTR FOK CALL
0AE0 CD 0000x CALL MBM$RXBR sREAD BOOTLOOP REG
0AE3 CD 0D47 CALL PRT$BHS sPRINT NEM STATUS

0AE6 El pop HL

OAE7 F! PoP AF

0AES C9 RET

SRR B K % K E B X K % X U

y##% WRITE BOOTLOOP REG
PHEE K K R K K K E K K X KEK

0AEY F5 OPR$6: PUSH AF

OAEA E5 PUSH HL

0AER 21 0810 LD HL ,MBMBUF 3SET BUF PNTR FOR CALL
0AEE CD 0000% CALL MBMSWXBR $WRITE BOOTLOGP REG
0AF1 CD OD47 CALL PRTSBMS ;PRINT MBM STATUS

0AF4 El POP HL

0AFS F1 Pop AF

0AF6 C9 RET

Fiqure 17, NIDS Software (page 11 of 34).

172

NACRO-80 3.36 17-Mar-80 PAGE 1-20

JHEE E B K K B K R E REN

j¥4% WRITE BOOTLOOP sxx
NUEEEEENE RN}

0AF7 FS OPR$7: PUSH AF

0AF8 CD 0000« CALL MBMSWZBL sWRITE BOOTLOGP ;
0AFB CD 0D47 CALL PRTSBAS sPRINT MBM STATUS

OAFE FI POP AF

0AFF (9 RET

JREK K B B K N K X X K NEK

s#e% READ FSA STATUS' xx»
SHREN B B K K X K X X NNE

0BOO £S5 OPR$3: PUSH AF 3
0B01 CD 0000% CALL MBMS$RFSA sREAD FSA STATUS' ,
0804 LD 0D47 CALL PRT$BMS $PRINT MBM STATUS :
0B07 Fi FOP AF

0Bos (¢ RET

HILIE 1]
3#% ABORT #x%
JHEE R X K EER

0B0? F3 OPR$?: PUSH AF

0BOA CD 0000% CALL HBMS$ABRT sAFORT CURRENT INSTRUCTION
0BOD CD 0D47 CALL PRTSBNS sPRINT MBM STATUS

0810 Fi pPoP AF

0B11 (9 RET

;*l* [B BE 2R 3K 3R 2N £ 5 2
;#%% URITE SEEK #a%
U N EEEEN N

0B12 FS OPR$A: PUSH AF

0813 CD OED7 CALL SETADR 35ET BMC ADDR REG VALUES
0814 FEFF cp NEG1 $INVALID INPUT?

0B18 28 06 JR 1,ASRT JYES

0B1A CD 0000% CALL MBNSWSEX 360 SEEX

Figure 17. MIDS Software (page 12 of 34),

173

MACRO-80 3,36 17-Mar-80 PAGE 1-21
0B1D €D 0D47 CALL PRT$BHS sPRINT MBM STATUS
0820 Ft ASRT: POP AF
0B21 CY RET

JHEE R X O B X X X NEE

y¥#% READ BOOTLOOP x»x
JHEE K R B R K X X NEN

0B22 TS OPR$B: PUSH AF

0823 CD 0000 CALL MBMS$RZBL ;READ BOOTLOOF :
0826 CD 0D47 CALL FRTSBNHS sPRINT MBM STATUS !
0B29 Ft pap AF '
0B2A €9 RET

JERE B R B KR R R X KX R ‘

y##% READ CORRECTED DATA #xx
TUNEEEEEREERR

0B2B F3 OFR$C: PUSH AF

or2C CD 0000 CALL MBMSRCDT sREAD CORRECTED DATA
0B2F €D 0D47 CALL PRTS$BMS sPRINT MBM STATUS
0832 R POP AF

0B33 C9 RET

;**! 2R 2R 38 2K B B 2 2
y##% FIFD RESET %xx
;*** ¥R OE KRN BN

0B34 F5 OPR$D: FPUSH AF

0B35 CD 0000% CALL MBMSFFRE yRESET BMC FIFQ
0B38 CD 0D47 CALL PRTSBMS sPRINT MBM STATUS
0838 Ft Fop AF

0B3C C9 RET

Fiqure 17. MIDS Software (page 13 of 34),

174

NACRO-80 3.36 17-Har-80 PAGE 1-22

FEER X R K NN

}#%% PURGE %%
FER X R B KR

J 083D FS OPRSE: PUSH AF 1
0B3E CD 0000% CALL MEMSPURG ;PURGE MBM SYSTEM 1
» 0B41 CD 0D47 CALL PRTSBMS sPRINT MBM STATUS
0B44 Fi Pop AF
u 0B45 €9 RET

SEER K K KB K O B K X XEN

s#%% SOFTWARE RESET wxn
PEEE B X K K B X N K RKE

0B4s FS OPR$F: PUSH AP

0B47 CD 0000% CALL MBMSSRES yRESET MBM SYSTEM
0B4A CD 0D47 CALL PRTS$BMS 3PRINT MBM STATUS
0B4) Ft PapP AF

0B4E €9 RET

L B I B I 12

yeen HELP wxx
THEE K K X REE

OBAF F5 OPR$H: PUSH AF

0850 €5 PUSH BC

0Bt DS PUSH DE

0B52 OE 09 LD C,FRTLN HE R EEEEEER R RN
0854 11 0528 LD DE ,MENU 3% PRINT COMMAND MENU #
0857 CD 0005 CALL CDOS SEREEEEENEEREN
0B5A Dt POP DE

0B5B Ci pPOP BC

0B5C F1 PoP AF

0B5D C9 RET

PAGE

Figure 17, MIDS Software {(page 14 of 34),

175

NACRO-80 3,36

17-Har-80 PAGE 1-23

SHEHE K O % K X K K K K B ¥ XEE

yaee INITIALIZE WBM BUFFER wux
SHEN K N K N K K N K K ¥ K K ¥NE

0B3E FS OFR$I: PUSH AF

0BSF €S PUSH BC

0B50 D5 PUSH DE

0Bs1 ES PUSH HL

0862 OE 09 LD C,PRTLN y#%% PROMPT USER ##x

0Bs4 11 041E LD DE,NSGI$1 s#%% FOR INITIAL #¥#

0867 CD 0005 CALL CDOS je#% VALUE xx

0B6A OE 0A LD C,RDLN HEEEEERENEN

0BsC 11 o8DC LD DE,CONBF 3% AWAIT RESPONSE *

0B6F CD 0005 CALL CDOS TR E R KKK KKK K

0872 3A 08DD LD A, (CONBF+1) yGET NBR OF CHAR INPUT

0B75 FE 02 cp TWO yWERE THERE 2?

0877 20 33 JR NZ,I$ERR 3NO

0879 CD 0BBY CALL CONvs2 ;CONVERT THE 2 CHAR TO BINARY

0B7C 32 0810 LD (MBMBUF) ,A ySET 1ST BUFFER VALUE

0B7F OE 09 Lb C,FRTLN J¥HN PRONPT USER wx

0881 11 043D LD DE,MSGIs2 y#%x FOR INCRENENT x##

0B84 CD 0005 CALL cDOS 35 1] VALUE 113

0887 OE 0A LD C,RDLN HEREEEREREE)

0B8? 11 0aDC LD DE ,CONBF 3% AWAIT RESPONSE *

0B3C CD 0005 CALL Cpos HEEEERE BN NN

0B&F 3a 08DD LD A, (CON8F+1) jGET NBR OF CHAR INPUT

0892 FE 02 cp TWO sWERE THERE 27

0B94 20 16 JR NZ,ISERR 3ND

08956 CD 0BBY CALL CONVS$2 JCONVERT THE 2 CHAR TO BINARY

0B99 4F LD C,A 3SAVE INCREMENT VALUE

08?4 3A 0810 LD A, (NBMBUF) $SET INITIAL VALUE

0BYD 06 CB LD B,BUFLEN-1 3 LOOP CDUNTER/MOVE LENGTH

0B9F 21 0811 LD HL ,MBMBUF+1 3 MBM BUFFER PNTR

0BA2 81 ISLPS: ADD A,C yBUMP PREVIOUS MBMBUF BYTE

0Ba3 77 LD (HL) A 1SAVE IN MBNBUF

0BR4 23 INC HL sBUNP MBNBUF PNTR

0BAS 10 FB DINZ ISLPS sLOOP UNTIL DONE

0BA7 CD OBES CALL OPR$P sPRINT FIFG BUFFER ON CONSOLE
Figure 17, NIDS Software (page 15 of 34),

176

MACRO-80 3,36 17-Mar-80 PAGE 1-24
OBAA 18 08 JdR I$RT
q 0BAC OE 09 I$ERR: LD C,PRTLN PR E R KRR EE R ERE XN
0BAE 11 020D Lb DE, INPERR 3* PRINT INVALID INPUT MSG #
0881 CD 0005 CALL CDOS HEEEEEEEEEENE NN
0BB4 Et IsRT: FPOP HL
0B85 D1 poP 0E
0BB6 i PoP BC
08BB7 F! pop AF
OBBS C9 RET

3 *%% CONVERT 2 ASCII BYTES TO BINARY *xx

0BBY 3A 08DE CONVS$2: LD A, (CONBF+2) 3GET MOST SIGNIFICANT NIBBLE

0BEC CD OF7D CALL ASESCONV ;CONVERT IT TO BINARY

0BBF 47 LD B,A HEEEEEREENEEREEN !
0BCO CB 20 SLA B ;% SET MOST SIGNIFICANT * :
0BC2 CB 20 SLA B ;% NIBBLE WHILE ZEROING *]
0BC4 CB 20 SLA B 3* THE LEAST SIGNIFICANT & o
0BCS CB 20 SLA B IR R R R R EEE R R

0BC8 3A 08DF LD Ay (CONBF+3) 3GET LEAST SIGNIFICANT NIBBLE

08BCB CD OF7D CALL A$BSCONY ;CONVERT IT TO BINARY i
OBCE B0 Ok B MERGE WITH WSN(IBBLE) '
0BCF (9 RET

SHREN B B K % B X X R X K K X K K K KEX

yeu% SET INTERRUPT I/0 PROCESSING x
JEEE K B B K K K KR K N XX K N K KNE

0BD0 S OPR$J: PUSH AF

0BD1 AF X0R A g SET wew
0BD2 3C IN A s#e% INTERRUPT x%x
0BD3 32 08OF LD (INTFLG) ,A pee FLAC wex
08D CD 0000% CALL MBMSISET

089 P POP AP

08DA C9 RET

SHEE B B K B N ORE K X B K N N N EEE

y#ex SET POLLED I/0 PROCESSING wx»
THEE R R K B R R R X RO E X K OENR

0BDB FS OPR$K: PUSH AF
0BDC AF XOR A s#ex RESET INTERRUPT

Figure 17, MIDS Software (page 14 of 34),

177

MACRO-80 3,36 17-Mar-80 PAGE 1-25
0BDD 32 080F LD {INTFLE) ,A S 11 FLAG 233
0BEO CD 0000% CALL NBMSICLK
OBE3 Ft PoP AF
0BE4 C¢ RET

SHER B M X X K N B X X R KX E X K ONAR

j##% PRINT NBM BUFFER ON CONSOLE *xx
THEN K K K K K K K K K K KK K K X NEK

0BES FS OPR$P: PUSH AF

0BE6 E5 PUSH HL

0BE7 21 0810 LD KL ,tBMBUF 1INIT BUF PNTR
OBEA CD OBFé CALL P$PG 3a6% PRINT 3 s%xs
0BED CD 0BF5 CALL PsPG j#% PAGES #xx
0BFO CD OBFé CALL P$PG sexx OF DATA *wx
0BF3 El POP HL

0BF4 Fi PoP AF

0BFS CY RET

k6% PRINT AN MBM PAGE #xx

-

0BF4 FS P$PG: PUSH AF

0BF? (5 PUSH BC

0BF8 D5 PUSH DE

0BF? 06 04 LD B,4 3SET NBR OF LINES TO BE FRINTED
0BFB OE 09 PsCl: LD C,PRILN HEREEREREENNNE!
0BFD 11 0100 LD DE,CRLF 3% SKIP TO NEXT LINE #
0C00 CD 0005 CALL CDOS HEREEEREERRR
0C03 €D 0C30 CALL PsPLL 3PRINT A LONG LINE

0C06 10 F3 DINZ PsCi 1LOOP UNTIL DONE

0C08 3A 0002% LD f, (WBM$BMCR+2) ;%% ERROR CORRECTIDN *#
0C0B E4 40 AND RCDBIT+ICDBIT juss ENABLED? L
0CoD 20 0B JR NZ,P$C3 3YES

OCOF OE 09 LD C,PRTLN sNO, * % % % 2 % % % % % &
0Ci1 11 0100 LD DE,CRLF 3 % SKIP TO NEXT LINE
0C14 CD 0005 CALL CDOS IOREEEEEE R R R
0C17 CD 0C2¢ CALL PsPSL 3PRINT A SHORT LINE

0ClA OE 09 P$C3: LD C,PRTLN yex SKIP LINE w##

oCIC 11 0100 LD DE,CRLF j#e BETWEEN x¥x

0CIF CD 0003 CALL CDOS jEE PAGES wax

Figure 17. MIDS Software (page 17 of 34),

178

MACRO-80 3,36 17-Mar-80 PAGE 1-26
0cz2 n pPoP DE
0c23 Ct pPoP BC
0c24 F1 popP AF
0c25 C9 RET

3 #x% PRINT A LINE OF 4 OR 16 BYTES

0C26 F3 PsPSL: PUSH AF
027 (3 PUSH BC
0c2s DS PUSH DE
0C29 CD 0C4D CALL P$BLK
ocac N poP DE
0cap 1 POP BC
0C2E F1 pPoP AF
0C2ZF C9 RET
0€30 F P$PLL: PUSH AF
0cat €5 PUSH BC
0c32 D5 PUSH DE
0C33 CD oC4p CALL PSBLK ;PRINT 4 BYTES
0C36 CD 0C4D CALL P$BLA iPRINT 4 MORE
037 OE 02 LD C,PRTCHR HEEEREEER.
0c3e 4E 20 LD E,SPACE 3% PRINT 8
0C3D CD 0005 CALL CPhOS 3% BYTE SPACER
0C40 CD 0005 cALL CDOS HEEERERERR
0C43 CD 0C4D CALL PS$BLK $PRINT 4 BYTES
0C45 CD 0C4D CALL PsBLX 3PRINT 4 MORE
0c4s N1 popP DE
0C4n (i pop BC
0C48 F1 POP AF
oc4ac 09 RET
0C4D 06 04 P$BLK: LD B4 3SET NBR OF BYTES IN BLOCK
0C4F OE 02 P$C7: LD C)PRTCHR SEEEEEEEE
0C51 1E 20 LD E,SPACE 3% PRINT SPACER «
0€53 CD 0095 CALL CDOS HEREEEEE N
0C36 7E Lp A, (HL) jeek PRINT xxx
0C57 €D 0D9B CALL PRTSBYT jEek A BYTE
0css 23 INC HL ;BUNP BUF PNTR
0C5B 10 F2 DINZ PsC7 ;LOOP UNTIL DONE
0C50 €D 0005 CALL rDOS 3END OF BRLOCK SPACER
0cs0 C9 RET

Figure 17. MIDS Softmare (page 18 of 34).

179

AD-Al18 072 AIR FORCE INST OF VTECH WRIGHT-PATTERSON AFB OH SCHOO=-=ETC “F/6 14/3 ‘
AN INFLIGHT RECORDER PROTOTYPE FOR THE INFLIGHT PHYSIOLOGICAL D==ETC{U)
FEB 82 R E MEISNER

UNCLASSIFIED AFIT/GCS/EE/82M=5

i“....
<01

0cs1
0cs2
0Cs3

0Cs4
0Cs6
0csy

0csC
0C4E

0C70
0C72
0C73
0C75
0c78
0C74
0c7C
OC7F
0C30

0ca3
0Ca4
0cas
0C84

NACRO-80 3.36

FS
€5
D5

OE 09
11 0458
€D 0005

3E OE
D3 29

DB 28
47

DB 28
CD 0D9B
OE 02
1E 20
CD 0005
78

CD 0098

)|
c1
Fl
cy

17-Nar-80 PAGE

1-27

;l!l***l!l&lll**l*ili*

j##% PRINT BMC ADDR REC ON CONSOLE wx#
N EEEE R E RN RN RN R RE R

OPR$G: PUSH
PUSH
PUSH

LD
LD
CALL

LD
ouT

IN
LD
IN
CALL
LD
LD
CALL
LD
CALL

POP
POP
POP
RET
PAGE

AF
BC
DE

C,PRILN
DE, NSO
CDoS

A,ADRO
(BNSCAD) ,A

A, (BHSDATA)
B,A

A, (BRSDATA)
PRTSBYT
C,PRICHR
E,SPACE
C00s

AyB
PRTS$BYT

DE
BC
AF

R KR RN E KRR

3% BMC ADDRESS REG
REEEEE RN R

*
*
*

L U

y#ux SET BHC PNTR #xx
yeex 10 ADDR REG xxx

sREAD ADDR REG LSB

3SAVE LSB FOR LATER PRINT
;READ ADDR REG MSB

sPRINT MSB

PREEE R AR

s* PRINT A SPACE *
NEEEEEE RN
sRESTORE ADDR LSB

$PRINT LSB

Figure 17, NMIDS Software (page 19 of 34).

180

el S D 4

0ce7
ocas
0ca?

0CsA
ocac
0CsE
0C91
0c92
0c93

0C95
0c97
0C9A

0ced
ocor
ocaL
0CA4

0CA8

0CAA
0CAD

0CBO
0CB!
0CB2
0CB3

MACRO-30 3.36

F5
L5
ES

3E 55
05 28
21 0810
77

23

10 FC

OE 09
11 0470
CD 0005

3E 00
D3 29
21 0810
06 28
OE 28
ED B2

Cb op47
CD OBES

El
€1
Fl
£y

17-Har-80 PAGE

1-28

FHHE & & % B ¥ REE

j#u READ FIFO wxx
SUEEEERRL

OPR$R: PUSH
PUSH
PUSH

LD
LD
LD
LD
INC
DJNZ

LD
LD
CALL

LD
outr
LD
LD
Lb
INIR

CALL
CALL

PoP

pop

Pop

RET
PAGE

AF
BC
HL

A,FILLER
8,400
HL,MENBUF
(HL) ,A

HL

$-2

C,PRTLN
DE, DESHSG
CDOS

A,FIFO
(BNSCHD) ,A
HL , MBMBUF
B,40D
C,BMSDATA

PRT$BMS
OPR$P

HL
BC
AF

3INIT FILL CHAR

H LOOP CNTR
BUF PNTR

EEEEEREER

FILL THE BUF *

I EEEEREEN

»r sy #s w

;**!*I‘*i********&

3% NOTE: 1ST CHAR OF FIFQ ... #
TER R KK KK R E KRR RN

yexx SET BHC PNTR wxx
gk TO FIFD wen
;INIT INPUT BUF PNTR

3 INPUT COUNT

H FIFO INPUT PORT
sREAD 40 BYTES FROM FIFO

sPRINT BNC STATUS
3PRINT FIFO BUF

Figure 17, MIDS Software (page 20 of 34).

i64

i
|
!
MACRO-80 3,36 17-Mar-80 PAGE 1-29
THEE E R B K B K K K KK KK KK NN i
y#u% SET THE BMC REGISTER VALUES wu»
U EEEE RN ERNER IR NN
0CB4 FS OPR$U: PUSH AF
B C5 PUSH BC
0CB6 CD 0DCS CALL SETBLR $SET BLR REG VALUES
0CBY FE FF cp NEG1 ERROR?
oces 28 1C JR Z,U$RT 3YES
0CBD €D 0EO7 CALL SETEMR 3SET EMABLE REG VALUE
0CCO CD OED? CALL SETADR 3SET ADDR REG VALUES
y#x# COMPUTE BLOCK XFER SIZE #x»
j##% BLKSIZ = PGSIZ * #PGS wwx
L
0CC3 OF 40 LD C,64D $INIT MBM PAGE SIZE
0CCS 3A 0002+ LD A,(MBMS$BNCR+2) 3GET BMC ENABLE REG VALUE A
occe E6 60 AND RCDBIT+ICDBIT $HAS ERROR CORRECTION BEEN ENABLED? '
0cCA 20 02 JR NZ,UsCS 3YES
0CCC OE 44 LD C,68D sNO, PAGE HAS 4 ADDITIONAL BYTES AVAIL
0CCE 3A 0000% usCs: LD A, (MBN$BHCR) sa%x GET NBR OF PAGES ®»x
oDt 47 LD B,A s#x% TO BE XFERRED *x#
oDz AF XGR A
0co3 8t usCéz ADD A,C 3ADD ONE MORE PAGE TO BLOCK SIZE
oce4 10 FD DINZ UsCé
0Cbs 32 0000% LD (MBMSPSIZ) ,A ySET PAGE SIZE TO MATCH BMCR TABLE
0CD? CD OCDF USRT: CALL OPR$V sDISPLAY RESULTS OF OPR$U
occ €t POP BC
) I PoP AF
OCDE €9 RET
PAGE
Figure 17, MNIDS Software (page 21 of 34).

182

0CDF
0CE0
0CEL

0CE4
OCE7
OCEA
OCED

OCFo
OCF2
OCFS
OCFB
OCFB

OCFE
0p00
0Do3
0004
0009

opoc
0DOE
on1
opi4
0017

0D1A
001
0DIF
op22
0025

0028
0D2¢
0D2A
0D2B

MACRO-80 3.36

F3
c5
05

0E 09

11 04CE
€D 0005
3A 0000%
CD 0D9B

0E 09

11 04E0

€D 0005

3A 0001
cD 0D9B

0E 09

11 04F2
€D 0005
34 0002x
€D 0098

OE 09

11 0504
CD 0005
3A 0003
CD 0098

0E 09

11 0516

CD 0005

3A 0004x
€D 0D9B

D!
C1
F1
c9

17-#ar-80

PAGE

1-30

;*l*lli*l*lll*ﬁiil*l

yius PRINT BMC REGISTER VALUES wax
NI NN EEEREE NN

OPR$V: PUSH
PUSH

PUSH

LD
LD
CALL
LD
CALL

LD
LD
CALL
LD
CALL

LD
LD
CALL
LD
CALL

LD
LD
CALL
LD
CALL

LD
LD
CALL
LD
CALL

PoP
POP
POP
RET

PAGE

Figure 17,

AF
BC
DE

C,PRTLN

DE, BLRONSG
£00S

A, (WBHSBMCR)
PRTSBYT

C,PRTLN
DE,BLR1MSG
cpos

A, (MBNSBMCR+1)
PRTSBYT

C,PRILN

DE, ENRMSG
cDos

A, (MBNSBUCR+2)
PRTSBYT

C,PRTLN

DE ,ADROMSG
CDOS

Ay (MBMSBMCR+3)
PRT$BYT

C,PRTLN

DE ,ADR1NSG
£DOs

A, (MBMSBHCR+4)
PRT$BYT

DE
BC
AF

183

AR *

3% BLR LSB = »
PEE R R

s#%% FRINT BLR wex
s#%% LSB VALUE wax

SERERER
3% BLR MSB = %
HERERENE:
y¥u% PRINT BLR %«
s#%% MSB UALUE #xx

HEREEERER.
3# ENABLE REC = »
IEEREERRE RN
s##% PRINT ENR #xx
s#6 VALUE ®x

NEREEERNE
3* ADDR REG LSB =
SEEERER RN
s#e% PRINT ADDR
y##% REG LSB VALUE

SREERE RN N X
s# ADDR REG MSB =
NEEEER R NN
y#4x PRINT ADDR
;#ax REG MSB VALUE

MIDS Software (page 22 of 34),

{22
%%

]
%
*
Ri%
(244

MACRO-80 3,36 17-Mar-80 PAGE 1-31

SHEE B X B ¥ KM 122

;¥4 WRITE FIFO »s¥
THEE B R B R B % R

2 F5 GPRSM: PUSH AF
002D €5 PUSH KC
02E ES PUSH HL
0D2F 3E 00 LD A,FIF0 sekx SET BNC PNTR ks i
0031 03 29 QUT (BNSCMD),A pews TO FIFO wax |
0033 21 0810 LD HL,NBMBUF JINIT INPUT BUF PNTR A
003 06 28 L B,40D s INPUT COUNT i
0D38 OF 28 LD C,BNSDATA * FIFD INPUT PORT :
0D3A ED B3 OTIR SWRITE 40 BYTES TO FIFQ
003C Et PP HL _
003 C1 POP BC j
0D3E Fi POP AF :
0DIF C9 RET ;,
y

"** KK KER

ek EXIT %as

JEER R B NN
D40 ED 7B 0978 QPR$X: LD SP,(OLDSP) RESTORE OLD STACK
0044 C3 0000 P 0 SRETURN TO CDOS

PAGE

Fiqure 17, NIDS Software (page 23 of 34),

184

MACRO-80 3,36 17-Mar-80 PAGE 1-32

TEE R R B R KK K R E KR K KN KK KRR E KK R KN KRN

i *

3% THIS ROUTINE PRINTS THE MBM CONTROLLER STATUS. 1IN *

;* ADDITION, WARNINGS ARE PRINTED WHEM EITHER BUSY, OP *

3% COMPLETE, OR OP FAIL STATUS IS SET. *

3 ¥

* INPUT: N/A ¥

i* *

3% OUTPUT: APPROPRIATE CONSOLE MSG *

¥ *

;# N R XN
0047 PRT$BNS:
0D47 F5 PUSH AF
ord4s CS PUSH BC
0D49 D5 PUSH DE ;
0D4A CD 0000% CALL NBNSSTAT $READ MBM STATUS 3
0D4D CB 7F BIT BSYBPS,A yBUSY BIT SET? ‘
0D4F 28 0A JR Z,PRTS$C3 iNO
0051 OE 09 LD C,PRTLN LIRS EEEEEEE !
0053 11 022E LD DE,BSYWRN 3% PRINT BUSY WARNING »]
0D56 CD 0005 CALL €DOS HEEREEEEENNER,
0059 18 1A JR PRTSC7 yIGNORE OTHER BITS
0058 CB 77 PRT$C3: BIT OPCBPS,A ;OPERATION COMPLETE?
0DSD 28 OA JR Z,PRT$C4 $NO
0DSF OE 09 LD C,PRTLN SEEREEEREEEE NN
0D61 11 023F Ld 0E,GPCMPL 3% PRINT OP COMPLETE MSGC *
0Ds4 CD 0005 CALL CDOS ERE KRR KRR R KK
0Dé7 18 OC JR PRTSC7 ;IGNORE OTHER BITS
0D69 CR AF PRT$C4: BIT OPFBPS,A ;0P FAIL SET?
0068 26 va JK Z,PRT$C7 3NO
0DsD OE 09 LD C,PRTLN TER KR KN R KKK K XKW
0D6F i1 0257 LD DE,OPERR 3¢ PRINT OP FALIL WARNING =
0072 €D 0005 CALL CDOS EE R RN ER RN R KN RN

1

0075 OE 09 PRT$C7: LD C,PRTLN IR EEEERERERE!
0077 11 029C LD DE,STATHD 3% PRINT 'STATUS = '«
0074 €D G005 CALL CDOS SEEEEEEREE R RN
007D CD 0D9B CALL PRTSBYT %
oo D1 popP DE
ops1 €1 pPOP BC

Figure 17, MIDS Software (page 24 of 34),

185

MACRO-80 3,36 17-Mar-80 PAGE 1-33

02 R POP AF K
0083 C9 RET

LR R SR IR AR IR R B R BN SR R 20 BN AN 2 2R % BN AR % R BN R BN AR 2R 2% BN N X I

i* *

3* THIS ROUTINE PRINTS THE ADDRESS CONTAINED IN THE HL REG]

3% PAIR ON THE CONSOLE, ALONG WITH AN APPROPRIATE MESSAGE. *

3% *

3# INPUT: HL - mMEM ADDR TO BE PRINTED *

] %

3¢ OUTPUT: NBM ADDR IS PRINTED ON CONSOLE *

1% HL - UNAFFECTED ¥

3* *

PEOE R R K N K KK K K R N KK KRN R R KK RN KKK KRR KKK
0D84 PRTSAD: ‘
0084 F3 PUSH AF Fy
008s C5 PUSH BC
0pgs DS PUSH DE
D87 OE 09 LD C,PRTLN ISR R RN RN 3
0087 11 04A% Lb DE,STADDR 1% OPERATIDN STARTED AT ... *
0D8C €D 0005 CALL CDOS S EEEEEEEEEERE RN
0D8F 7C LD A HEREERN
0D90 CD 0D9B CALL PRT$BYT i# PRINT
0093 70 L AL 3% MBN ADDR #
0094 CD 0D9B CALL PRT$BYT SERREENE
07 M PoOP DE
0098 Ct POP B
0099 F1 popP AF
s C9 RET

PAGE

Figure 17, MNIDS Software (page 25 of 34),

186

0098
0D9B
0D9C

009D
0D9E
0DAO
obA2
0DA4
0DAS
0DA9
0DAA
0DAC

ODAF
0DBO
0031

0DB2
0DB2
0DB4
0DBs
0DB3
0DBA
0DBC
ODBE
0Deod
onc1
0DC4

MACRO-80 3,38

£s
D3

47

CB 3F
CB 3F
CB 3F
CB 3F
€D 0DB2
78

E6 OF
CD 0DB2

)}
€1
£y

FE 0A
30 04
Fé 30
18 04
Dé 09
Fé 40
0E 02
SF

CD 0005
cy

17-Mar-80 PAGE

® % ;K XK

INPUT:

OUTPUT:

WO BE BS BE PP B GP B S

»®

PRT$BYT:
PUSH
PUSH

LD
SRL
SRL
SRL
SRL
CALL
LD
AND
CALL

POP
POP
RET

1-34

THIS ROUTINE PRINTS THE HEX VALUE OF THE BYTE IN REG A

*
*
*
A - BYTE TO BE PRINTED *
*
DIGIT IS PRINTED ON CONSOLE ¥

*

¥

[2R 2R 2R Sk 2R 30 2 K 2N BE B BE 2R B 2R BE BE 2R 2N BE BE R BN 2K N BN BE B X 3

BC

PRT$DIG
A,B
OFH
PRT$DIG

DE
BC

3%%% PRINT ONE DIGIT xx#

PRT$DIG:
cp
JR
OR
JR
DIG$CS: SUB
OR
DIG$PT: LD
LD
CALL
RET
PAGE

Figqure 17, HMIDS Software (page 26 of 34),

0AH
NC,DIGSCS
30H
DIGSPT

9

40M
C,PRICHR
E,A

£00S

187

[ZE 2R 2R BE 2 2 2 BN 2R BE 2 R B BE B BE K B BE BE B BRI R N BE 3K R BE BE 3N

i At

1SAVE BYTE

%% SET-UP wxx
yees HIGH wx
;%% ORDER w¥x
3k 4 BITS *xx

sRESTORE BYTE
3SET-UP LOW ORDER 4 BITS

+IS HEX DIGIT = 0 - 97
N0
sCONVERT TO ASCII 0 - ¢

g#u% CONVERT TD sxs
y#u% ASCII A - F wxx
HEEEE SR REER N
s* PRINT THE DIGIT *
NEREE NN NN NN

00C5
0DCs
0DCs

0DC7
0ncy
once

0DCF
11}
0DD4

0007
0DDA
oDnC
0DDE
0DEO

0DE2
0DE5
0DES
ODEA
0DEC
ODEE

0DFO
0DF3
0DFS
0DF8

O0DFA
ODFC

NACRG-80 3.36

€5
D5

0E 09
11 02A8
CD 0005

OE 0A
11 08bC
€D 0005

3A 08DD
FE 00
28 26
FE 01
20 18

3A 08DE
Cb OF7D
FE FF
28 OF
FE 04
30 0A

32 0000%
3E 10
32 0001x
18 OA

0E 09
11 020D

17-dar-80 PAGE

Ww W o W X K

INPUT:

x x

QUTPUT:

*x K A&

G P BP B WP B P W S NP WP Bh e
*

»

[3R 2K 2% 2 J

SETBLR:
PUSH
PUSH

LD
LD
CALL

LD
LD
CALL

LD
cp
JR
cp
JR

LD
CALL
cp
JR
cp
JR

LD
LD
LD
JR

SBSERR: LD
LD

1-35

N/&

THIS ROUTINE SETS THE BNMC ADDR REG VALUES LOCATED WITHIN
THE MBM DRIVER MODULE.

BMC BLOCK LENGTH REG VALUES ARE SET
A = -1, IF INVALID INPUT RY USER
X*??° = UNDETERMINED, IF (SEMI-) VALID
INPUT BY USER

L3R 3R B 2R BN BE K K K 3 BE K 2R 2R 3 B AR BN N R AR O 3 2% 2N J

BC
DE

C,PRTLN
DE, BLKMSG
CDOS

C,RDLN
DE,CONBF
£DOS

A, (CONBF+1)
ZERO
Z,5BSRT
ONE

NZ ,SBS$ERK

Ay (CONBF+2)
ASBSCONY
NEG1
7,5B$ERR
FOUR

NC ,SBSERK

(MBMSBHCR))A
A, 108
(MBNSBMCR+1) A
SBSRT

C,PRTLN
DE, INPERR

s%%% PROMPT USER N
sa%% FOR NBR OF PAGES wxx
s#%% PER I/0 BLOCK x»«

T EEEEERE

3% AWAIT RESPONSE #*
SEEEERERENE

;GET NBR OF CHAR READ

sWAS IT 0? (IWPLIES CARRAIGE RETURN)
3YES, DO NOT CHANGE BLR VALUES

WAS IT 1?7
3NO

y%#% CONVERT CHAR JUST w*x
s#%% KEAD TO BINARY ##«
sINVALID INPUT?

3YES

JINPUT (= 3 (CURRENT S/W LIMIT)

sNO

+SET BLR LSB
y##% SET BLR MSB FOR *xx
yen 1 BUBBLE XFER xxx

ERE RN E RN
i# INPUT ERROR *

Figure 17, MIDS Software (page 27 of 34).

188

[EE2E B 2R AR BE 2R BN B R 2R BN B BE R 2R BE B BR SR 2R BE B BN R 2 B 2R AR BE B

*
*
*
| 4
]
*
*
*
*
*
#*

NACRO-80 3.36 17-Mar-80 PAGE 1-36

ODFF €D 0005 CALL Cnos SRR NNEEEE

0E02 3E FF LD A NEG] 1SET ERROR FLAG

0E04 D1 SBSRT: POP DE ;

0E0S L1 POP BC ,

0E06 c9 RET

b

HE R EEEEEEEEEEENEENIENEERIENEMEEREEJS NN
i* *
3% THIS ROUTINE SETS THE BMC ENABLE REG VALUES LOCATED WITHIN =
3* THE MBM DRIVER MODULE, *
¥ *
s+ INPUT: N/A *
* *
3¢ OQUTPUT: BMC ENABLE REG VALUES ARE SET ¥
3%]
HENREEEREEEEREEREEEEEEEEEEEEZEEI RN

0E07 SETENR:

0EQ7 F5 PUSH AF

0E08 €5 PUSH BC

0E09 D5 PUSH DE

0E0A ES PUSH HL

0E0B 06 00 LD R,ZERD 1#BM REINIT MOT REQUIRED FLAG

0EOD 3A 0002% LD A, (MBH$BMCR+2) e GET INITIAL Li3

0E10 67 LD H,A yax% ENABLE REG VALUE wxx

OE11 JA 080F LD A, (INTFLG) ;¥4 INTERRUPT xxx

0E14 N7 AND A s¥%% 1/0 ENABLED? %#x

0E15 CA 0E52 JP 1,SE$C3 sNO

OEt8 OF 09 SEsCO: LD C,PRTLN HIEN RN

0E1A 11 02CC LD DE,EN1NSG 3* NORMAL INTERRUPTS?

OE1D €D 0005 CALL CDOS SENENEERENENNENN

0E20 0E 0t LD C,RDCHR s##n GET USER »xx

0E22 €D 0005 CALL chas s%% RESPONSE *#x

0825 FE 0D cp CR JUSE OLD SETTING?

0E27 28 OC JR Z,SESC $YES

0E29 CB 84 RES INBPS,H sCLEAR NORMAL INT

0E2B FE 4E cr NO ;DISABLE NORMAL INT?

OE2D 28 06 JR Z,SE$C1 {YES

QE2F FE 59 cp YES sENABLE NORMAL INT?

)X 1) 20 ES JR NZ,SESCO sNOT SURE, TRY AGAIN

Figure 17. MNIDS Software (page 28 of 34),

189

MACRO-80 3.36 17-Mar-80 PAGE 1-37

1

0E33 CB C4 SET INBPS,H sSET NORMAL INT’S 4
0E35 OE 09 SE$C1: LD C,PRTLN REEEERENEENER]
0E37 11 02F8 LD DE,EN2MSG 3% ERROR INTERRUPTS? %
0E3A €D 0005 CALL cbos SEEEEEEER RN
0E3D 0E 01 LD C,RDCHR s#e% CET USER *ux
0E3F CD 0005 CALL cbos s#%% RESPONGE xux
0E42 FE 0D cp Ck sUSE OLD SETTING?
0E44 28 OC JR 7,SE$C3 $YES
0E46 CB aC RES 1EBPS,H sCLEAR ERROR INT
0E43 FE 4E ce NG sDISABLE ERROR INT?
OE4A 28 06 R 7,5E$C3 $YES ‘
GE4C FE 59 cp YES sENABLE ERROR INT?
0E4E 20 E5 JR NZ,SE$C1 3NOT SURE, TRY AGAIN

<0 CB CC SET 1EBPSH 1SET NORMAL INT'S
0E52 0 09 SE$C3: LD C,PRTLN SEEEEEREE R
0E54 11 0322 LD DE,EN3NSG 1% MAX XFER RATE? #
0E57 CD 0005 CALL CDOS SEEEENNRENRE
0ESA 0E 01 LD C,RDCHR s#0% GET USER wwx
0ESC CD 0005 CALL cbos 3%%x RESPONSE %%
OESF FE 0D cr CR sUSE OLD SETTING?
OEé1 28 oC JR Z,SE$CS ;YES
0E43 CB 9C RES XFRBPS,H ySET MAX XFER RATE
OE45 FE 59 cp YES ;MAX XFER RATE?
0E47 28 06 JR 1,SE$CS 3YES, (0 BIT IMPLIES MAX RATE)
0E49 FE 4E cp NO sMIN XFER RATE?
OE4B 20 E5 JR NZ,SE$C3 sNOT SURE, TRY AGAIN
OE4D CB DC SET XFRBPS ;H 3SET MIN XFER RATE
QESF 0E 09 SE$C5: LD C,PRTLN HEEEREREEERNEN
0E71 11 034E LD DE,ENSHSG 3* ENABLE READ CORRECTED? «
0E74 CD 0005 CALL (W)[13] HEEEEEEERERE R
0E77 0 0t LD C,RDCHK y%#% GET USER wxx
0E79 CD 0005 CALL cbos sa%% RESPONSE wxx
0E7C FE 0D cP CR sUSE OLD SETTING?
0E7E 28 14 JR Z,SESCS $YES
0E80 FE 59 cp YES 3NO, ENABLE RCD?
0EA2 20 08 JR NZ,SE$CS3 ;s MO
OE84 CB EC SET RCDBPS,H 3 YES, SET KRCD BIT
0E86 CB F8 SET 7,8 3 SET MBM REINIT REQUIRED
OE&8 CB B4 RES ICDBPS,H 3CLR ICD--ONLY 1 ERROR CORRECT ALLOWED
0E8A 18 33 JR SESEND

Figure 17, MIDS Software (page 29 of 34),

190

OE&C
OESE
0E90
QE92

0E94
0E?4
0E98
OE9A

0E9C
0E9E
QEA1
QEA4
0EAS

QEAY
0EAB

0EAD
OEAF
OEB1
0EB3
OEBS
0EB7
0EBY
OEBB
0EBD

OEBF
0ECO
0EE3
0ECS
OEC7
0ECY
0ECC
OECF

0ED2
0ED3
OED4
0EDS
OEDé

MACRO-80 3.36

FE 4E
20 DF
CB AC
Cb F8

CB &C
28 04
CB B4
18 23

OE 09
11 0379
CD 0005
0F 01
CD 0005

FE 0D
28 12

FE 59
20 04
CB F4
CB F8
18 08
FE 4E
20 El
CB B4
CB F8

7C

32 0002%
CB 78

28 0B

0E 09

11 03A4
CD 0005
CD 0485

El
0t
€1
fl
£y

{7-Mar-80 PAGE

SE$C53: CP
JR
RES
SET

SE$Cé: BIT
JR
RES
JR

SE$Cé1: LD
LD
CALL
LD
CALL

cp
JR

cr
JR
SET
SET
JR
SE$C43: CP
JR
KES
SET

SESEND: LD
LD
BIT
JR
LD
LD
CALL
CALL

SESRT: POP
POP
POP
POP
RET
PAGE

1-38

NO
NZ,SESCS
RCDBPS,H
7,8

RCDBPS, H
7,SE$C61
1CDBPS, H
SESEND

C,PRTLN
DE ,EN6NSG
chos
C,RDCHR
€D0os

CR
Z,SESEND

YES
NZ,SE$C63
ICDBPS,H
7,B
SE$END
No

NZ ,SE$CA1
ICDBPS ,H
7,8

aH
(MBMSBMCR+2) A
7,8

7,5ESRT
C,PRTLN
DE,REINSG

£D0S

OPRS$1

HL
DE
BC
AF

;DISABLE RCD?

sNOT SUKE, TRY AGAIN
sYES, CLEAR RCD BIT

1SET MBM REINIT REQUIRED

sRCD SET?
N0
$YES, ONLY ONE ERROR CORRECT ALLOWED

R R K E R KKK R KKK R KD
3% ENABLE INTERNAL CORRECTION?
EREE R E R ER KN X KRN
s#% GET USER s
y#i% RESPONSE #x%

sUSE OLD SETTING?
3YES

NO, ENABLE ICD?
NO
YES, SET ICD BIT
SET MBM REINIT REQUIRED

.y B s we

sDISABLE 1CD?

sNOT SURE, TRY AGAIN
{CLEAR ICD BIT

sGET MBM REINIT REGUIRED

y¥#% SET ENABLE REG VALUE wxx
;e%% IN BMC REG TABLE »x»
1MJST MBM BE REINIT'ED

sNO

IYES, # ¥ % & ¥ K ¥ X X % KX
H ¥ REINITIALIZING MBM
3 SRR A EEREER R

Figure 17, MIDS Software (page 30 of 34).

91

e e ¥ e N s

0ED7
0ED7
0EDA
0ED9

0EDA
OEDC
OEDF

OEE2
OEE4
OEE7

0EEA
OEED
OEEF
OEF1
OEF4
OEFé
OEF7
OEF9?
OEFB

OEFE
0F01
OF04
0F0s

OF0?
OF0A

RACRO-80 3.3

C5
D5
ES

OE 09
11 03E0
€D 0005

0E 0A
11 080C
£ 0005

3A 08DD
FE 00
20 08

3A 0004%
Es FO

67

18 17

FE 01
C2 QF47

3A 08DE
€D OF7D
FE FF

CA OFs7

87
CB 24

17-Mar-80 PAGE 1-39

S R R NN Y E N NN RN NN NN]
i *
3% THIS ROUTINE CKEATES AN MBM ADDR FROM USER RESPONSES *
s# TELLING WHICH BUBBLE AND WHAT PAGE ARE REQUIRED. THIS *
3# GENERATED VALUE 1S SAVED IN THE BMC ADDR REC SAVE AREA ¥
s* WITHIN THE MBM MODULE. *
i* *
i*# INPUT: N/A ¥
i* *
3% CUTPUT: BMC ADDR REG VALUES ARE SET *
1% A = -1, IF INVALID INPUT BY USER %
i X'??° = UNDETERMINED, IF (SEMI-) VALID *
3* INPUT BY USER *
* *
$HOE R H R E K R R N N N K K B R E R K KN KK KRR K H KX KRR
SETADRR:

PUSH BC

PUSH DE

PUSH HL

LD C,PRTLN s#%% PRONPT USER wxx

LD DE,M5G4s1 s##% FOR BUBBLE x%x

CALL CDOS 3#%* NUMBER

LD C,RDLN IH K KRN K KK KKK

LD DE,CONSF 3¢ AWAIT RESPONSE

CALL CDOS HEEEEEEEE RN]

LD A, (CONBF+1) sGET NBR OF CHAR READ

cr ZERD sWAS IT 07 (IMPLIES CARRAIGE RETURN)

JR NZ,5A8C2 ;N0

LD A, (NBMSBMCR+4) 3%xx INIT BUBBLE NBR FOR ##x

AND OFOH y#%#% LATER CONCATENATION #xx

LD H)A st WITH PAGE NBR *%x

JR SASC3
SAsC2: CP ONE sNBR OF CHAR READ = 1?

JP NZ,SASERR sNO

LD Ay (CONBF+2) j##% CONVERT DIGIT JUST #*xs

CALL ASBSCON j#n% READ TO BINARY wx

cp NEG1 sINVALID INPUT?

JP 1,SASERR SYES

LD H,A R EEEEE RN R KRN

SLA H 1# SET BUBBLE NBR TO *

Figure 17, MIDS Software (page 31 of 34),

192

PP, R

OF0C
OFQE

0F10
0F12
OF15

OF18
OF1A
OF1D

0F20
0F23
0F25
0F27
0F24
oF2C
0F2D
0F30
0F32
OF34

0F35
OF39
OF3C
OF3E
OF41
0F42

0F43
0F44
OF49
0F4B
0F4D
OF4E
0F50
0F32
0F54

0F5é
0F39
OF5C
OFSE
0F60
OFé1
0F52
OF45

MACRO-80 3.36

CB 24
CB 24

OE 09
11 03FC
CD 0005

0E 0A
11 08DC
€D 0005

3A 08DD
FE 00

20 OB

3A 0004x
Eé OF

B4

32 0004x
18 JF

FE 03

20 3t

3A 08DE
Ch OF70
FE 08
D2 OF&7
B4

67

3A 08DF
CD OF7D
FE FF
28 1A
6F

CB 25
CB 25
CB 25
CB 25

3A 08E0
CD OF7D
FE FF

28 07

B85

6F

22 0003
18 0A

17-Kar-80

SA$C3:

SASC4:

Fiqure 17.

PAGE

SLA
SLA

LD
LD
CALL

LD
LD
CALL

LD
cp
JR
LD
AND
or
LD
JR
ce
JR

LD
CALL
cp
JeP
orR
LD

LD
CALL
cp
JR
LD
SLA
SLA
SLA
SLA

LD
CALL
ce
JR
OR
LD
LD
JR

1-40

H
H
C,PRTLN

DE,MSG4s2
cbos

C,RDLN
DE ;CONKF
Coos

A, (CONBF+1)
ZERO
NZ,5A$C4

A, (HBHSBNCR+4)

OFH
H

(NBMSBNCR+4) A

SASRT
THREE
NZ ,SASERR

A, (CONBF+2)
ASBSCONY

8
NC,SASERR

H

KA

A, (CONBF+3)
ASBSCONV
NEG1
7,SAS$ERR
LA

| il 2l ol

fi, (CONBF+4)
ASBSCONV
NEGL
1,5ASERR

L

L,A

3# MBN ADDR REG FORMAT
AR RERRE R

%% PRONPT USER wax
jinx FOR PAGE wwx
jee% NUMBER s

SEEEEERERER
3* AWAIT RESPONSE *
TEEEEEREERER
3GET NBR OF CHAR READ

WAS IT 07 (IMPLIES CARRAIGE RETURN)
sNO

EERREEREEERE RN

s* CONCATENATE BUBBLE NBR *

3% WITH 4 NSB’'S OF PAGE NBR »

JERE R R KR KK KN KNS

sWAS IT THREE?
sNO

y#%x CONVERT MOST SIGNIFICANT sxs
s#ex DIGIT (MSD) TO BINARY wxx
sINVALID DIGIT INPUT (IE, } 7)?
;YES

s#xx SET MSD OF x»

je4n NBM PAGE NBR wnax

34 CONVERT NEXT *x
s#a% DIGIT TO BINARY xm
sINVALID INPUT?
3YES
HEEEENERE
3 SET NEXT

% MSD OF MBM

¥ PAGE NBR
BROEEERKE

- wa a5 o
x A A W M

3%#% CONVERT LSD wx»
suxe% TO BINARY wnx
1INVALID INPUT?

sYES

yoex SET LSD OF max
s#%x NBM PAGE NBR #xx

>

(MBNSBMCR+3) HL ;SET BMC ADDR REG VALUES

SASRT

MIDS Software (page 32 of 34),

193

OF67
0F&9
OF4C
OF6F

0F71
0F73
0F76
0F79
OF7A
0F7B
OF7C

0F7D
0F7D
OF7F
OF81
LX)
0Fas
0F87
OF89

OF8A
OF8C

NACRO-80 3.36

OE 09
11 0200
€D 0005
3E FF

OE 02
11 0004
CD 0005
El

)]

c1

ce

FE 47
30 09
FE 34
38 02
D6 07
E6 OF

3E FF
cy

17 -Har-80 PAGE

SASERR: LD

CALL
LD

SASRT: LD
LD
CALL

FOP
POP
RET

W ok Ak Ok O X

INPUT: A

»*

QUTPUT: A

@O Lo BP Ge B Be wb WS Se Wl we
x® XK %

[2K 3% K 3N 3R]

ASBSCONV:
cp
JR
cp
JR
SuB

A$BSCS: AND
RET

ASBSCE: LD
RET

END

1-41

C,PRTLN
DE, INPERR
£DoS
A,NEG1

C,PRTCHR
DE,LF
€nos

HL

DE

BC

HEEEEERENEENENE
3% PRINT INVALID INPUT MSG =
IEEEEEEEEENER NN

1SET INVALID INPUT FLAG

U H KR K KK X KX KX

3% MAKE OUTPUT PRETTY %
IR EEEE RN RN

THIS ROUTINE CONVERTS THE ASCII CHARACTER FOUND IN REG A
TO A BINARY DIGIT,

ASCII CHAR TO BE CONVERTED

CONVERTED DIGIT, IF INPUT WAS VALID
-1, IF INVALID INPUT BY USER

[2 2R 3K B 2R BE BE DR R 2 2 BE BE R B BN B BE 2B B K BN IR

‘Frel
NC,A$BSCE
‘941
C,A$BSCS
7

OFH

A NEG1

START

yexx FILTER SOME wxn
3#4% BAD INPUTS sux
HE RN R RENEE KR
1% CONVERT ASCII *
3% TO HEXIDECIMAL #*
;**i**lﬁi!*

+SET INVALID DIGIT FLAG

Figure 17, MIDS Software (page 33 of 34),

194

[2R 2K BE SR 2N BE BE SR BN SR 3R 2R 2R BE IE 2R 2R IR 2R BN BR B B BN K R BR 2R R BN BN

*
L]
*
*
*
*
*
*
*

r"————'—_——'v——' ™

MACR0-80 3.36 17-Mar-80 PAGE S

Macros:

Syabols:

ASBSCS OF87 ASBSCE O0F8A ASRSCO OF7D ASRT 0B20

ADRO 000E ADROMS 0504 ADR1 000F ADRINS 0514

BLXMSC 02A8 BLROMS O04CE BLRIMS O04E0 BMSCMD 0029

BMSDAT 0028 BSYBPS 0007 BSYWRN 022E BUFLEN 0Q0CC

Cbos 0005 CMDERR O1EA CONBF 08DC CONTIN 097A

CONV$2 0BB? CR 0000 CRLF 0100 DESHSG 0470

DIGSCS ODBA DIGSPY ODBE DMABPS 0002 ENIMSG 02CC

EN2MSG 02F8 EN3MSG 0323 ENSMSG 034E ENSMSE 0379

ENRMSG 04F2 FIFO 0000 FILLER 0055 FOUR 0004

GETSOP 0982 I$ERR OBAC ISLPS 0BA2 I$RT OBB4

ICDBIT 0040 ICDBPS 0006 IEBPS 0001 INBPS 0000

INPERR 0200 INTFLC O80F IPBPS 0007 LF 000A

MBM$SAB OBOB® MBMSBN OF43% MBMSFF 0B36x MBMSIC OBE1x
MBMSIN 0A87% NBNSIS OBD7x MBMSPS OCD7% MBMSPU O0B3Fx
MBMSRC OB2D* MBMSRE OAA4x MBMSRF 0BO2% MBM$RS OAD4
MBMSRX OAE1* MBMSRZ 0B24% MBMSSR 0B48x NBMSST OD4B»
MBMSWB OA7D% MBMSWR OABD® MBMSWS OB1B* MBMSWX OAEF*
MBMSMZ O0AF9% MBMBUF 0810 MENU 0528 NSG4$1 O3EO

MSG4$2 O3FC MSGIS1 O041E MSGIs2 043D MSCO 045B

NEGL FFFF NO 004 O04$RT 0ADY OLDSP 0978

ONE 0001 OPCBPS 00064 OPCMPL 023F OPERR 0257

OPFBPS 0005 OPR$O 0A77 OPR$1 0A85 OPR$Z OABE

OPR$3 0AB2 OPR$4 OACB OPR$S OADB OPR$6 OAE?

OPR$7 OAF7 OPR$& 0BOO OPR$9 ORO9 OPR$A 0QB12

OPR$B 0B22 OPRSC 0B2B OPR$D 0B34 OPRSE 0B3D

OPRSF 0B46 OPRSH OBAF O0PR$I OBSE OPR$J 0OBDO

OPR$X OBDB OPR$P OBES OPR$@ 0Cé1 OPR$R 0C87

OPRSU OCB4 OPRSY OCDF OPRSW 0D2C OPRSX OD40

P$BLX 0C4D P$Cl OBFB P$C3 OCiA P$C7 0C4F

P$PGC OBF6 PSPLL 0C30 P$PSL 0C24 PREMSG 0103

PROMPT 01DD PRTSBM 0D47 PRT$BY ODYB PRT$C3 0DSB

PRT$C4 O0D69 PRTSC7 0D7S PRTSDI 0DB2 PRTCHR 0002

PRTEND 0024 PRTLN 0009 FRTSAD 0D84 RCDBIT 0020

RCDBPS 0005 RDCHR 000t RDLN 000A REINSG 03A4

SA$C2 OEF9 SASC3 OF10 SA$C4 OF32 SASERR OF&7

SASRT OF71 SB$ERR ODFA SBSRT QE04 SESCO OE18

SE$C1 OE35 SE$C3 OES52 SE$CS OESF SESCS3 OESC

SESC4 O0E94 SESCAL OQESC SESCA3 OEB7 SESEND OEBF

SE$RT OED2 SETADR OED7 SETBLR 0DC5 SETENR OE07

SPACE 0020 STACK 0978 STADDR 04AY START 092E

STATHD 029C THREE 0003 TWO 0002 USCS OCCE

L..6 OCD3 USRT 0CD9 WBLBPS 0004 XFRBPS 0003

YES 0059 ZERD 0000

No Fatal error(s)
Figure 17, MIDS Software (page 34 of 34),

195

I —

’..___......,...._.._.__......_....___.______.,w

NACRO-80 3,36 17-Mar-80

280
0000’

sDATE:

.o ws o

-

PAGE

Figure 18,

;TITLE:
$AUTHOR s

3SYSTEM:
;SETUP:

PAGE 1
CSEG
MBM - MAGNETIC BUBBLE MEMORY DRIVERS

CAPT R E MEISNER

CROMENCO Z2D / CDOS 2.36
THIS PROGRAM IS ASSEMBLED AS MBM.REL, FOR LINKING
WITH USER PROGRAMS REQUIRING MBM DRIVERS.

3
sDESCRIPTION: THIS PROGRAM PROVIDES SUBROUTINES FOR DRIVING

INTEL 7110 MAGNETIC BUBBLE MEMORIES (MEM) IN BOTH
THEIR POLLED AND INTERRUPT I/0 CONFIGURATIONS,
AVAILABLE SUBROUTINES ARE:

ENTRY MBHS$STAT sGET CONTROLLER STATUS

ENTRY MBMSICLR sRESET SYSTEM FOR POLLED 1/0

ENTRY MBMSISET ySET SYSTEM FOR INTERRUPT 1/0

ENTRY MBMSWBRN sWRITE BOOTLOOP REG MASKED

ENTRY MBMSINIT ;BN INITIALIZATION

ENTRY MBMSREAD SREAD | PAGE

ENTRY MBMSRXBR 3READ BOOTLOOF REG

ENTRY MBMSWRIT SWRITE § PAGE

ENTRY MBHSRSEX sREAD SEEK

ENTRY MBMSWXBR sWRITE BOOTLOGF REG

ENTRY MBNS$WZBL JWRITE BOOTLOOP

ENTRY MBMSRFSA sREAD FSA STATI

ENTRY MBMSABRT JABORT

ENTRY MBMS$SRES sSOFTWARE RESET

ENTRY MBNSWSEX sWRITE SEEK

ENTRY MBMS$RZBL sREAD BOOTLOOP

ENTRY MBMSRCDT sREAD CORRECTED DATA

ENTRY MBMSFFRE yFIFO RESET

ENTRY MBH$PURG sMBN PURGE

COMMAND DATA VARIABLES ARE:
ENTRY MBM$BMCR yBRC REG VALUES
ENTRY MBM$PSIZ sHBM PAGE SIZE OF XFER

MBM Software (page 1 of 32),

196

—

- ™

NACRO-80 3.36 17-Mar-80 PAGE 1-1

OPERATION:

-

CONTROLLER (BMC) STATUS REGISTER DEFINITION

BIT 0
BIT 1
BIT 2
BIT 3
BIT 4

FIFO READY

PARITY ERROR
UNCORRECTABLE ERROR
CORRECTABLE ERROR
TIMING ERROR 1
BIT 5 - 0P FAIL -
BIT & - OP COMPLETE
BIT 7 - BUSY

CONTROLLER (BMC) REGISTER DEFINITIDNS ‘
REG NAME 3

DEFINITION)
A UTILITY ;
NOT USED BY MBN
B BLOCK LENGTH (LSB) j
c BLOCK LENGTH (MSB)

BIT 0-10 - NUMBER OF PAGES TD BE X-FERRED
BIT 11 - NOT USED
BIT 12-15 - NUMBEK OF FSA CHANNELS

D ENABLE
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7

INTERRUPT ENABLE (NORMAL COMPLETION)
INTERRUPT ENARLE (ERROR)

DA ENABLE

MAX FSA T0 BMC XFER RATE

WRITE BOOTLOOP ENABLE

ENABLE 'READ CORRECTED DATA (RCD)
ENABLE ' INTERNALLY CORRECTED DATA (ICD)’
ENABLE PARITY INTERRUPT

E ADDRESS (LSB)

F ADDRESS (NSB)
BIT 0-10 - STARTING ADDRESS WITHIN EACH MBM
BIT 11-14 - MBM SELECT
BIT 15 - NOT USED

TSP B S Bl SO 20 PO PP BP BY MO BP Bl P SO P S SP WO B PP P SO B8 S S SO S PP P WP B PP BU B NP B S S0 s S

AGE

Figure 18, MBN Software (page 2 of 32).

197

WACRO-80 3.36 17-Mar-80 PAGE 1-2
;*!*******!!***!** CONSTANTS 66 3696 3696 96 96 3636 36 36 38 96 36 96 36 36 96 38 96 36 36 96 6 96 36 36 1698 96 96 36 98 36 6 %6 9 36 9 #F
0000 ZERO EQU 0
0001 ONE EQU &
000D R EQU ODH $ASCIT CARRAIGE RETURN /_
0004 LF EQU OAH $ASCIT LINE FEED j
0038 INTSRST EQU 38H ;780 INTERRUPT RESTART ADDR (IN=1) 1
00C3 JPSOPCD EQU OC3H s0P CODE OF UNCONDITIONAL JUNP 4
0014 HALFUL EQU 22D sBYTES AVAIL AT WALF FULL INTERRUPT :
sCDOS SYSTEM CALL PARAMETERS
0005 €DOS EQU O00SH ;CDOS ENTRY POINT
0009 PRTLN EQU ¢ 3PRINT BUFFER LINE ON CONSOLE 1
0024 PRTEND EQU °§' ;END PRINT BUFFER MARKER |
9
sMBN 1/0 PORT ASSIGNMENTS
0028 BMSDATA EQU 28H sMBM DATA (I/0) ;
0029 BMSCMD EQU 29H sMBN CONMAND (OUT ONLY)
0029 BMSSTAT EQU 29H sMBM STATUS (IN ONLY)
sREGISTER ADDRESS COUNTER (RAC) ASSIGNMENTS
000B BLRO EQU OBH sBLOCK LENGTH REGISTER (LSB)
000C BLR1 EQU OCH sBLOCK LENGTH REGISTER (MSB)
000D ENR EQU ODH sENABLE REGISTER
000E ADRO EQU OEH sADDRESS RECISTER (LSB)
000F ADRL EQU OFH JADDRESS REGISTER (MSB)
0000 FIFO EQU OOH sFIFO 1/0 REGCISTER
sMBM CONTROLLER (BMC) STATUS BIT POSITIONS
0000 FFRBPS EQU 0 1(LSB) - FIFO READY
0002 UNCBPS EQU 2 ; UNCORRECTABLE ERROR
0003 CORBPS EQU 3 ; CORRECTABLE ERROR ‘
0004 TINBPS EQU 4 ; TIMING ERROR
0005 OFFBPS EQU 5 : OP FAIL
0005 oPCBPS EQU & ; OP CONPLETE
0007 BSYBPS EQU 7 1(MSB) - BUSY
sMBM CONTROLLER ENABLE REG BIT POSITIONS
0000 INBPS EOU 0 $(LSB) - INTERRUPT ENABLE (NORMAL)
0001 IEBPS EOQU 1 ; INTERRUPT ENABLE (ERRORS)
0002 DMABPS EOU 2 ; DMA ENABLE

Figure 18, MBM Software (page 3 of 32).

198

BACRO-80 3.36 17-Mar-80 PAGE 1-3

0003 XFRBFS EQU 3 3 MAX FSA TO BMC XFER RATE

0004 WBLEPS EQU 4 3 ENABLE BOOTLOOP WRITE]

0005 RCDBPS EQU 5 H ENABLE READ CORRECTED DATA '
: 0004 ICDBPS EQU 4 3 ENABLE INTERNALLY CORRECT DATA

0007 IPBPS EQU 7 3(MSB) - INTERRUPT ENABLE (PARITY)

yMBM CONTROLLER ENABLE REG BIT SETTINGS

0001 INBIT EQU 01H sNORMAL INTERRUPTS
i 0002 IEBIT EQU 02H s INTERRUPT ON ERRORS
0080 IPBIT EQU 80H sINTERRUPT ON PARITY ERROR

;HBN COMMAND CODES

0010 BMSWMBR EQU 10H sWRITE BOOTLOOP REGISTER MASKED i
0011 BM$INT EQU 114 JINITIALIZE

0012 BM$RD EQU 12H sREAD BUBBLE DATA

0013 BMSWR EQU 134 $WRITE BUBBLE DATA

0014 BN$RSK EQU 140 sREAD SEEK ,
0015 BMSRBR EQU 15H sREAD BOOTLOOP REGISTER :
0016 BMSWBR EQU 16K sWRITE RODTLOOF REGISTER

0017 BMSWBL EQU 174 JWRITE BOOTLOOP

0018 BM$RFSA EGU 18H sREAD FSA STATUS

001y BN$ABT EQU LYH JABORT

0014 BRSWSK EQU 14K sWRITE SEEK

0018 BNSRBL EQU 1BH sREAD BOOTLOOP

001C BMSRCD EQU tCH sREAD CORRECTED DATA

001D BMSFRE EOQU 1DH sRESET FIFO

001E BMSPREG EQU 1EH ;MBM PURGE

001F BMSSRE EQU {FH 3SOFTWARE RESET

0020 BNSRES EQU 204 sRESET STATUS REG AND INTERRUPTS

sCONSOLE MESSAGES

0000° 20 20 3C 3C SUPMSGs DB * * {((COMMAND NOT IMPLEMENTED)))' ,FRTEND
0022° 20 20 2A 24 RDERR: DB " #u% ERROR »%x READ PAST END OF PAGE *,FRTEND
0049° 0D 0A 09 3C ERRNSG: DB CR,LF," (({ INTERRUPT GENERATED BY ERROR }))‘,PRTEND
0071 0D 0A 09 09 WHONOZ: DB CR,LF,’ #x% UNDETERMINED ERROR s»x’ ,PRTEND
3 %% WHONOZ IS A MSG THAT IS OVER-WRITTEN BY 1 OF #xx
3 x#% THE 3 FOLLOWING MSGS ONCE ERROR IS DETERMINED #xx
0090 0D 09 09 24 UNCERR: DB CR,’ %#% UNCORRECTABLE ERROR *x*’
00AE° 0D 0A 24 DB CR,LF,PRTEND
00B1" 0D 09 09 24 CORERR: DB CRy’ #x% CORRECTABLE ERROR #x’
00CF* 0D 0A 24 DB CR,LF ,PRTEND
00D2° 0D 09 09 24 TIMERR: DB CR,’ s4¢ TIMING ERROR xer

Fiqure 18. MBM Software (page 4 of 32).

199

MACRO-80 3,36 17-Mar-80 PAGE 1-5
00F0' 0D OA 24 DB CR,LF,PRTEND
00F3' 0D OA OPCASG: DB CR,LF
00FS 09 3C 3C 3C DB (({ PREVIOUS OPERATION HAS CONPLETED)))
011E° 0D O0A 24 0B CR,LF,PRTEND
0121° 09 20 € 3C RSTHSC: DB ' (((STATUS AND INTERRUPT ARE RESET }))'
0149 0D 0A 24 DR CR,LF,PRTEND
014C° 20 20 3C 3C INIMSG: DB (<(SYSTEM INITIALIZED FOR INTERRUPT 1/0)))’
017A° 0D OA 0A DB CR,LF,LF
017D° 43 41 55 54 DB 'CAUTION: IN INTERRUPT MODE, THE ONLY VAL.D COMMANDS °
0182 41 52 45 38 DB *ARE:’ ,CR,LF
01B8' 09 09 32 20 DB ' 2 - READ," ,CR,LF
01C5' 09 09 33 20 DB 3 - WRITE, AND',CR,LF
0107' 09 09 54 48 DB THOSE GREATER THAN F.',CR,LF
01F0° 09 20 20 57 DB WITH THE EXCEPTION OF 2 AND 3, ALL CONMANDS
021F° 49 4E 20 54 DB *IN THE',CR,LF
0227° 09 20 20 52 DB : RANGE OF O THRU F GIVE UNPREDICTABLE
024F' 52 45 53 55 DB “RESULTS.’
0257° 0D 0A 0A 24 DB CR,LF,LF ,PRTEND
0258° 20 20 3C 3C REIMSG: DB ({{ SYSTEM REINITIALIZED FOK POLLED 1/0)))',PRTEND
0289° 09 3C 3C 3 FFRNSG: DB (({ RESETTING FIFQ)))',CR,LF,PRTEND

$EHBRHHEHHOEE R END CONSTANTS 16330 R RIS I I

FHHRARRRNNNRRRNE VARTABLES 130396503636 0103636 10003636 063630 16363 36 130 3030 3000300030 A0 I M 30

0243 00 RDSIZ: DB 0 sNBR OF BYTES LEFT T0 BE XFERRED
;DURING READ

0284° 00 WRSIZ: DB 0 {NER OF BYTES LEFT TO BE XFERRED
sDURING WRITE

0245° BUFPTR: DS 2 {PNTR FOR TRACKING A USERS I/0 BUFFER

0267' 00 INTPLG: DB 0 sINTERRUPT ENABLED FLAG

0208 INTSAV: DS 3 $SAVE OLD INTERRUPT RESTART ADDR

0005 BRLEN EQU 5 sLENGTH OF NBMSBMCR

024B° HBMSBNCR : $BMC REC VALUES (INITIALLY SET AS SPECIFIED BELOW)

026" 01 DB 01H {BLRO - #%x 1 PAGE, 1 CHANNEL xs

026C° 10 DB 10H {BLRY - wex XFER *a

024D° 08 DB 0BH {ENR - LON FREQ XFER

020" 00 DB 00H ;ADRO - ¥%% 1T PAGE OF wxx

026F° 00 DB 00H JADR1 - ®¥x 15T BUBBLE #x

02B0° MBN$PSIZ:

02B0° 44 DB 48D {MEN PAGE SIZE IN BYTES {MAX 255)

$INITIALTZED TO MATCH MENSBMCR SPECS

SHHEHEHEE RS END VARTABLES 060 30 304 J AN KNI IS 3 0

PAGE

3 Figure 18, MBN Software (page 5 of 32),

200

NACRO-80 3.356 17-Mar-80 PAGE 1-8

LR 2R B 2R 2R B B BN BN B 2R BE BE BE BE 2R BE 2R BE B BE B 3R B NE BK B B B O BN

L

THIS ROUTINE GETS THE MBM CONTROLLER STATUS.

x

INFUT: N/A

L 3

OUTPUT: A - CONTROLLER STATUS

S WS Ls LS B We s WP B
»

*
*
*
*
*
¥
*

B EE R R S R E NN NN NN

0281° MBNSSTAT:

02B1° DB 29 N A, (BN$STAT) sREAD CONTROLLER STATUS
0283 (@9 RET

*

2R 2R 2R S0 B BE BE K BE 2N B BE 2R 2K 2K IR 2N BE 2R B 2R 3K K BE 3K 2N 2K NE N B

x

THIS ROUTINE WRITES THE BUFFER POINTED T0 BY WL REGC PAIR TO
THE SELECTED BOOTLOOP REGISTER(S), NO VALIDATION FOR

THE PROPER NUNBER OF 1°S IS REGUIRED SINCE BMC HARDWARE
MASKS OFF UNWANTED BITS., (NOTE: THIS ROUTINE IS FOR
TESTING ONLY, PRODUCTION ROUTINE NEEDS T0 INITIALIZE

BLOCX LENGTH AND ADDRESS REGISTERS BEFORE WRITING).

W O W ok K K

INPUT: HL - PNTR TO FIFO BUF
(HL) - BUFFER OF DATA TO BE WRITTEN

® X &

OUTPUT: BGOTLOOP REGS ARE SET

*

e LS B N6 S B PP W B B8 P BE BP BI u
E R I R B R R . I B I I S 3

»

(2R SR BE R K BN 2R R 2E 2R B BE 2K BE B R 2R BE B B R 3R BE B BE SR K 3R BR B

0284’ NBMSWBRM:

02B4° FS PUSH AF

02B5° €5 PUSH BC

02B6° CD 0415’ CALL WAITSTAT sWAIT UNTIL EMC AVAIL

s#%# INITIALIZE BLR & ADDR REGS

02B9° 06 28 LD B,40D sINIT INPUT COUNT

02BB° OE 28 LD C,BNSDATA 3 FIFO INPUT PORT

028D ED B3 OTIR sWRITE 40 BYTES TO FIFO
02BF° 3E 10 LD A ,BMSWNBR H 11 SEND WRITE Lt
02C1° D3 29 our {BMSCHD) ,A s¥#% BOOTLODP REGC MASKED #xx

fiqure 18, MBM Software (page 4 of 32).

201

MACRO-80 3,36 17-Mar-80 PAGE 1-9
02¢3° 1 POP BC i
024 Fi POP AF 4
02cs C9 RET

E 3

[IR JE 2K K2R SN JE 2R R SR JR R 2% 2R 3R BE SR BE B NE B BE R BX BE 2R B BE 2R BN 3
*

x W

THIS ROUTINE IMITIALIZES THE BMC REGISTER TABLE AND THE MBM

*x

3
H
3
3% SYSTEM AS SPECIFIED IN THE BPX72 USERS MANUAL. *
i ®
3% INPUT: MBM$BMCR - TABLE OF BMC REG VALUES %
3* ’
3% OUTPUT: MBM$BNCR+3/4 - ADDR REG VALUES ARE UPDATED * !
I MBN PERIPHERAL SYSTEM IS INITIALIZED * k
;l' * ;
;‘l*!!lillii*l!*l*!*l***l*********
02C4’ MBMS$INIT: .
02C6' F5 PUSH AF ‘
02C7° 3A 0247 LD A, (INTFLG) 1EER IS INTERRUPT *%
02CA° A7 AND A s#%% PROCESSING ENABLED? wx%
02CB° C4 048D’ CALL NZ,INT$INIT sYES
02CE' 20 11 JR NZ,INSRT 3YES
0200° AF XO0R A s##% SET BMCR ADDR REG sx»
02D1° 32 02AF’ LD (MBM$BMCR+3),A 3%xx T0 1ST PAGE OF xxx
02D4° 32 02AF’ LD (MBMSBNCR+4) jA %ux 1ST BUBBLE *%%
0207° CD 0415’ CALL WAITSTAT sWAIT UNTIL BWC AVAIL
02DA° €D 03C4’ CALL SET$BHCR 1SET BMC REGS
0220 3E 11 LD A,BM$INT ;%% GEND THE BUBBLE *##
02DF° D3 29 ouT (BM$CHD) ,A s%%% INITIALIZE COMMAND #xx
02E1° F1 INSRT: POP AF
0282° C9 RET
PAGE

Figure !8. MBM Softmare (page 7 of 32),

202

MACRO-80 3,36 17-Mar-80 PAGE 1-10

»

L3R 2N BE B B 2R BN BN BE K B B R 2K B BE R 2R 2R BN BE BE R BK BE BE BE BE 3N BN 2

3

i *
1# THIS ROUTINE READS FROM 1 TO 3 MBM PAGES INTO A USER *
;+# DEFINED BUFFER AREA, * ;
;i 4
+# INPUT: HL - BECINNING ADDR OF INPUT BUFFER * !
3 * ~
+# OUTPUT: (HL) - INPUT BUFFER IS FILLED WITH MEM DATA * ;
13] % d
;l****l**i*ii**!*!********!***i*l*

02E3’ MBMSREAD:

02E3° FS PUSH AF

02E4° CD 0415° CALL WAITSTAT {WAIT UNTIL BNC AVAIL

02E7° CD 03C4° CALL SETSBMCR +SET MBM CONTROLLER REGS

02EA° 3A 0247° LD A, CINTFLG) (¥ex IS INTERRUPT wx %

02ED° A7 AND A s#%% PROCESSING ENABLED? wx»

02EE° C4 0487° CALL NZ,INTSREAD {YES .

02F1° 20 07 JR NZ,RD$RT $YES

02F3° 3E 12 LD A,BNSRD 1#%% [SSUE #x#

02F5° D2 29 ouT (BMSCMD) ,A %% READ wx»

02F7° CD 03EC’ CALL READ $READ MBM BLOCK INTO (HL) BUF

02FA° CD 03DA° RDSRT: CALL INCSADRR ;INCREMENT BMC ADDR REG VALUE

02F° F1 POP AF

02FE° €9 RET
PAGE

Figure 18, MBM Software (page 8 of 32),

203

WACRO-80 3.36 17-Mar-80 PAGE -1

HL IR EE B R B AR IR R A N IR 2R R 2R 2N IE 2R N 2R BN JN IR SE K IR K L N 2R 2K IR AN

1# THIS ROUTINE READS THE SELECTED BOOTLOOP REGISTER(S) INTD
y# A FIFO BUFFER, (NOTE: THIS ROUTINE IS FOR TESTING ONLY,
y# PRODUCTION ROUTINE NEEDS TG INITIALIZE BLOCK LENGTH AND
y# ADDRESS REGISTERS BEFORE READING, AND UNSCRANBLE

y* (DE-INTERLEAVE) THE BOOTLOOP VALUES.

y* INPUT: HL - PNTR TO BUFFER

s# OUTPUT: (HL) - BUFFER IS FILLED WITH BOOTLOOP DATA

.
*
WM O A K K K K K K N K N

HEE R EEEEE R N EEEE RN R R EE R E R RN
02FF' MBMSRXBR:
02FF* F5 PUSH AF
0300° CD 0415° CALL WAITSTAT ;WAIT UNTIL BRC AVAIL

s#xx INITIALIZE BLR & ADDR REGS

0303° 3E 15 LD A,BASRBR s#ex SEND READ #xx

0305° D3 2¢ ouT (BMSCHD) ,A y#%% BOOTLOOP REG *wx

0307° CD Q3EC’ CALL READ ;READ MBM BLOCK INTD (HL) BUF
0304 Fi PoP AF

0308° C9 RET

;l**i!*lllil!l*i!*iﬁl*il!fl!lii!**
i *
;% THIS ROUTINE WRITES 1 TD 3 MBM PAGES FROM A USER DEFINED «
1* BUFFER AREA. *
i *
INPUT: HL - BECINNING ADDR OF QUTPUT BUFFER ¥
] *
t# OUTPUT: MBM PAGE(S) WRITTEN x
i *
;!lil**ll*!*ll‘l!*l*!lli!!Illl***l-

030¢” NBMSWRIT:

030¢° FS PUSH AF

030" (S PUSH BC

030 ES PUSH HL

Figure 18, MBM Software (page 9 of 32).

204

4

"

030F°
0312°

0315°
0318°
0319°
031C*

031E"
0320°

0322°
0325
0327°

0329’
0328’
032E°

032F°
0331°
0333’
0333
0337°
0339’
0338’
033C’
033D
033E°

0340°
0343’
0344’
0345’
0344’

NACKO-80 3.34

Ch 0415’
€D 03Cs’

3A 0287°
A7

C4 04D4°
20 BC

3E 13
03 29

€D o41C’
Cs 47
28 FC

0E 28
34 02B0°
47

DB 29
CB 7F
28 Ok
CB 47
28 Fé
ED A3
00

00

00

20 EF

€D 03Da°
El
€1
Fi
e

17-Nar-80

WR$UT1:

WREWT2:

WRSRT:

PAGE

Figure 18.

PAGE 1-12

CALL WAITSTAT JWAIT UNTIL BMC AVAIL

CALL SETSBACR ySET MBM CONTROLLER REGS

LD A, (INTFLG) s#%% IS INTERRUPT 11
AND A y#n% PROCESSING ENABLED? wx
CALL NZ,INTSWRIT YES

JR NZ,RD$RT $YES

LD A,BHSHR y#x% SEND WRITE wxx

out (BM$CHMD) ,A yeex COMMAND #sx

CALL WATESTRT yeex WAIT UNTIL WRITE s
BIT FFRBPS,A y#%% STARTS AND FIFQ wxx
JK 1,WRSHTL yixx BECOMES AVAILABLE xxx
LD C,BMSDATA ySET FIFO OUTPUT PORT

LD A, (NBMS$PSIZ) s*%% SET OUTPUT wxx

LD B,A y#ex LENGTH sxx

IN A, (BNSSTAT) 3GET BMC STATUS

BIT BSYBPS,A 31BUSY?

JR Z,WRSRT 3ND

BIT FFRBPS,A yRO0M IN FIFQ?

JR 7, WREWT2 sNO, THEN WAIT

ouTI 3YES, OUTPUT NEXT BYTE

NOP

NOP 3GIVE FIFO-READY STATUS TIME TG CHANGE
NOP

JR NZ ,WR$WT2 ;LOOP UNTIL DONE

CALL INC$ADRK sINCREMENT BMC ADDR REG VALUE
POF HL

pop BC

PoP AF

RET

e ikt

MBM Software {page 10 of 32).

205

0347°
0347°
0348’
0349

034C°
034F°
0350°
0353'

0356
0358°

0354°
0358

035E’
035F°
0360°

3]
ES
CD 0415°

28 02AE°
2B

22 02AE’
CD 03Cé’

3E 14
D3 29

22
22 02RE’

El
F1
¢?

17-Mar-80

-e @ w9
W oW W WM M kO W

S BP B S P NS S
=

W

INPUT:

QUTPUT:

NBM$RSEK:

PAGE

Figure 18,

PUSH
PUSH
CALL

LD
DEC
LD
CALL

LD
out

INC
LD

pop
PopP
RET

THIS ROUTINE POSITIONS THE MBM AT A USER SPECIFIED PAGE
(RELATIVE TO THE MBM INPUT TRACK),

MBMSBMCR+3/4 - PAGE TO BE SELECTED

N/A

AF
HL
WAITSTAT

HL , (WBMSBMCR+3)
HL
(WBNSBHCR+3) ,HL
SET$BNCR

A,BMSRSK
(BMSCHD) ,A

HL
(MBM$BMCR+3) ,HL

HL
AF

ll*i**ll‘**!**l**!**l!l!**

sWAIT UNTIL BNC AVAIL

1% DECREMENT BMC ADDR wxx
y*#% REGISTER VALUE AS wxx
y#x% REQUIRED FOR SEEK xx#
3GET MBM CONTROLLER REGS

jexx SEND s
j#x% READ SEEK #wx

;¥#% RESET BAC ADDR VALUE ax#
y##% TD USER REQUESTED PAGE wx

MBM Software (page i1 of 32),

204

' EEEEREREEEEEEEEEE RN EE;

*
*
*
*
]
4
*
*

r—-——-—-————-————-_———-“

NACRO-80 3.36 17-Mar-80 PAGE 1-14

HESEEEEEEEREEEEEEEEEENEEEEEEEEEERN.

3* THIS ROUTINE WRITES THE BUFFER POINTED TO BY HL REG PAIR TO
y* THE SELECTED BOOTLOOP REGISTER(S)., NOTE, THIS ROUTINE

1# REQUIRES VALIDATION OF THE PROPER NUMBER OF 1'S TO BE PUT
y* IN THE BOOTLOOP BEFORE THEY ARE WRITTEN, (NOTE: THIS

y# ROUTINE IS FOR TESTING ONLY, PRODUCTION ROUTINE NEEDS 10
3* INITIALIZE BLOCK LENGTH AND ADDRESS REGISTERS BEFORE

3% WRITING, AND BUBBLE CHANNELS MUST BE INTERLEAVED BIT BY BIT
y* BEFORE THE BOOTLOOP IS WRITTEN).

3# INPUT: HL - PNTR TO FIFO BUF
i (HL) - BUFFER OF DATA TO BE WRITTEN

s# OUTPUT: BOOTLOOP REGS ARE SET

Mo A K K O K N O M K K KO K

b
NEEEEEEENEEEENEINENEEEEIEEIEIIENNENESJE])

03s1° MBMSWXBR:

0341° FS PUSH AF

0382 CS PUSH BC

CALL WAITSTAT sWAIT UNTIL BMC AVAIL

IR TIY)

y%#¥% INITIALIZE BLR % ADDR REGS %
®%% INTERLEAVING ROUTINE GOES HERE ww#

%% VALIDATION ROUTINE GOES HERE %##

IRV T IR IR T T LI LIRVT I PR v 7)

LD B,40D $INIT INFUT COUNT
LD C,BNsDATA H FIFQ INPUT PORT
OTIR jWRITE 40 BYTES TO FIFO
LD A,BNSUBR jexk GEND WRITE xxs
outT (BHSCMD) ,A %% BOOTLOOP REG wx
0363° LD 03BY° CALL NONSUP ;COMMAND NOT SUPFORTED
0364 Ci pop BC
0367 F1 popP AF
0348° C¢ RET
PAGE

Figure 18, MBM Software (page 12 of 32),

207

NACRO-80 3,34 17-Mar-80 PAGE 1-15

PERE R B H R R R KX KRR R KK KRR E R KK R KK RN KRN
3 *
3# THIS AREA RESERVED FOR -- WRITE BGOTLOOP ROUTINE ¥
i# ¥
s INPUT: »
3 ®
3% OUTPUT: =
* ¥
R N N AR
034y° MBMSWZBL:
0349° FS PUSH AF
3 CALL WAITSTAT sHAIT UNTIL BNC AVAIL
3 LD A, BHSWBL j%%% SEND WRITE swx
H ouT (BMSCHND) ,A s#%% ROOTLODP #wx
0354 CD 0389’ CALL NONSUP ;COMMAND NOT SUPPORTED
036D Fi POP AF
0348 C¢ RET

$HE X K K N K K K K K K KR KK R KN R B KK ENEREEKENKE
3* %
3% THIS AREA RESERVED FOR -- READ FSA STATUS ROUTINE *
3 *
s INPUT: ®

1% *
3* OUTPUT: =

1* *

HEEREEEEEEEEEEEEEEEEEEEEEEEREREESEEE]

034F° NBMSRFSA:
034F° FS PUSH AF
3 CALL WAITSTAT sWAIT UNTIL ENC AVAIL
H LD A,BNSFSA y#u% SEND FSA wux
3 out (BNSCMD) ,A seEk STATUS xux
0370° CD 03BY’ CALL NONSUP sCOMMAND NOT SUPPORTED
0373° F1 POP AF
0374 C9 RET
PAGE

Fiqure 18, MBN Software (page 13 of 32).

208

L —"

r————-——————-—-—-——-—-—-———-—-—r .

MACRO-80 3.36 17-Mar-80 PAGE 1-16

;iilllli*!ﬁi&ﬁ&!*ll!*ill**l‘kl!llll
3 *
3# THIS ROUTINE TERMINATES THE CURRENTLY EXECUTING COMMAND ¥
¥]
i# INPUT: N/A *
i* *
3# OUTPUT: N/A *
1 *
;ll!*!l*l**llil!!ll*!i****l*lll&!l

0375° NBMSABRT:

0375 F5 PUSH AF

0376 3B 19 LD A,BMSABT jee% SEND #ux

0378° D3 29 ouT (BMSCHD) ,A yxx ABORT *xx

0374 Ft poP AF

0378° C9 RET

;**!**!*l!!i*l*l!ll*il!*i*i**i***l
3 *
+# THIS ROUTINE RESETS THE EMC FIFO AND EACH FSA. X
i* *
i INPUT: N/A *
i* *
1% OUTPUT: N/A ¥
;* *
;!******!ll*!**‘illll!lllllll**l*&

037¢’ NBMSSRES:

037C' FS PUSH AF

037)° 3E IF LD A, BMSSRE ;##% SEND S/W wax

037F° D3 29 ouT (BMSCMD) ,A 148 RESET wa

0381 Fi POP AF

0382 €9 RET
PAGE

Figure 18, MBM Software {(page 14 of 32),

209

—

MACRO-80 3,36 17-Mar-80 PAGE 1-17

1 HEAEREEEREEEEESEEEEEEEREEEEEEREEEEEE
-

*
b}

3# THIS ROUTINE POSITIONS THE MBM AT A USER SPECIFIED PAGE ¥
3# (RELATIVE TO THE MBN QUTPUT TRACK). *
3 *
3
3% INPUT: MBM$BMCR+3/4 - PAGE TO BE SELECTED *
i* *
;¢ OUTPUT: N/A ¥
3* ¥
;*l********!**l******i******ll'l'l'l'l

0383’ MBMSWSEK:

0383 FS PUSH AF

0384 E5 PUSH HL

0385 CD 0415’ CALL WAITSTAT sWAIT UNTIL BMC AVAIL

0388 2A 02AE’ LD HL,(MBM$BMCR+3) ;#%x DECREMENT BNC ADDR ##x

033" 2B DEC HL y#n REGISTER VALUE AS #x%

038C° 22 02At’ LD (MBM$EMCR+3) ,HL ;#%¥» REQUIRED FOR SEEX w¥x

038F° CD 03C4’ CALL SET$BNMCR sSET MBM CONTROLLER REGS

0392° 3E 1A LD A ,BNSWSK ;%% SEND 1324

0394 D3 29 out (BMSCND) ,A s%%x WRITE SEEK ##x

0396 23 INC HL y#x% RESET BMC ADDR VALUE xxx

0397° 22 024E° LD (MBM$BMCR+3) ,HL 3%*% TO USER REQUESTED PAGE %

039A° El poP HL

0398 F1 FOP AF

039¢’ €9 RET
PAGE

Fiqure 18. MBM Software (page 15 of 32).

210

’ Y

MACRO-80 3.36 17-War-80 PAGE 1-18

el e i

HEREEEEEEEEEEEEEEEEEEEEEEEENENEEEREN

i* * :
3# THIS AREA RESERVED FOR -- READ BOOTLODP KOUTINE * ;
i* *

3% INPUT: %

i * 4
3% OUTPUT: » ’
it *

REEEEREEREREREEEEEEEEEEEEEEEEEJEJEENE] ;

039D* NBNSRZBL:

039D FS PUSH AF
; CALL WAITSTAT sWAIT UNTIL BNC AVAIL |
; LD A, BUSRBL ;#%% SEND READ #x% ‘
; OUT (BNSCAD),A s#%% BOOTLOOP wx 3

039E° CD 0389’ CALL NONSUP ;COMMAND NOT SUPPORTED

031" Ft POP AF

03M2° €9 RET

TER KK K K K K KR R KKK KRR K KRR KKK K EEKEER KN
3* *
y* THIS AREA RESERVED FOR -- READ CORRECTED DATA DATA ROUTINE «
#* *
;¢ INPUT: &

i* *
3+ OUTPUT:

1%

3

I EEEREEENREENEREEEEEREREENEEEEREEE]

03A3° NBNSRCDT:
0343° FS PUSH AF

; CALL WAITSTAT sWAIT UNTIL BNC AVAIL

; LD A,BHSRCD ;#¥% SEND READ wex

; 0UT (BASCHD),A s##%% CORRECTED DATA *x#
03a4° CD 03B CALL NONSUP ;CONMAND NOT SUPPORTED
0387° F1 POP AP
038’ C9 RET

PAGE

Fiqure 18. MBM Software (page 16 of 32).

211

MACRO-80 3.3 17-Mar-80 PAGE 1-19 :

SRR EE R R R R R R R R R R R R E R R R RN RN RN N
;* *
3% THIS ROUTINE RESETS THE MBM CONTROLLER (BNC) FIFO. ¥
i* %
¢ INPUT: N/A %
3* *
3% QUTPUT: N/A %
% *
N N N R R R R R R R E R R N RN

03A9" MEMSFFRE: ;
0389° FS PUSH AF ;
038A° CD 0415° CALL WAITSTAT SWALT UNTIL BMC AVAIL ‘
03aD" 3E 1D LD A, EMSFRE shxn SEND ak ;
03AF° D3 29 0UT (BMSCHD),A s#nx RESET ##% ;
0381° Fi POP AF :

;**************l****!*********ll*l i
i *
1# THIS ROUTINE PURGES MOST OF THE REGISTERS THROUGHOUT THE * :
1% MBM SYSTEM, INCLUDING SEVERAL IN THE BMC. *
]]
3% INPUT: N/A *
it %
3% QUTPUT: N/A %
i* *
R R R R R N N R R R R R R R R RN
03B2° MBM$PURG:
032" FS PUSH AF
0383 3E IE LD A, BNSPRG s#nn SEND %xx
0385’ D3 29 outT (BMSCHD) ,A s#un PURGE ##%
0387° F1 POP AF
0388 C9 RET
PAGE

Fiqure 18, MBM Software (page 17 of 32),

212

MACKO-80 3.36 17-Mar-80 PAGE 1-20

R R R R R R R R R R R R R R R E AR
i *
3# THIS ROUTINE PRINTS A WARNING THAT AN OPERATION 1S NOT YET «
1*# IMPLEMENTED, *
3* *
3% INPUT: N/A *
j * *
: 3# OQUTPUT: N/A *
! * %
;******l****l*}l*i**li***!**l*lll}
0389 €5 NONSUP: PUSH BC
03BA° DS PUSH DE
03pB° OE 09 LD C,PRTLN y#e% NOTIFY USER #ax
038D° 11 0000 LD DE ,SUPNSG yeex OF CONMAND %wx A
03C0° €D 0005 CALL CDboS y#%% NON-SUPPORT *#% %
03C3° D1 pOP DE
93C4° Ci roP BC
03C5" €9 RET
;*l***l*****i*********il!***iﬁll**
;* *
3# THIS ROUTINE SETS THE MBM CONTROLLER REGS FROM VALUES *
3* STORED IN THE MBM$BMCR TABLE, *
3* ¥
t# INPUT: WBMSBNCR - BMC REG VALUES *
3* *
3* OUTPUT: MBM CONTROLLER REGS ARE SET]
1 ¥
AR R R R R R R RN E R EE TR R R R R R R R R KRR R RN
03C4° SET$BMCR:
03C6’ TS PUSH AF
03C7* €S PUSH BC
03C8" ES PUSH HL
03C9° 3E 08 Ld A,BLRO yeex GET BMC POINTER TO wax
03CB" D3 29 ouT {BMSCHD) ,A je%¥ BLOCK LENGTH REG wax
03CD* 04 05 LD B,BRLEN 3SET LENGTH OF MBM$BMCR TABLE
03CF" OE 28 L C,BMSDATA ; OUTPUT PORT
0301° 21 02AB’ LD HL ,MBNSBNCR 1 OUTPUT BUFFER

Fiqure 18. MBM Software (page 18 of 32),

213

034’

0306’
037"
03D8’
03D9"

03DA°
0304’
03DB’

030C’
03E0°
032
03E5°
03E6’

03t9’
03EA’
03EB’

MACRO-80 3.36

ED B3

El
€1
F1
%

€5
ES

ED 4B 02AB°
06 00

27 02AE’
09

22 02RE’

El
C1
[

17 -Har-80

PP S B B SO SP P B SO S W e
L SR B R R R

*

PAGE

OTIR

POP
POP
POP
RET

HBNSBMCR TABLE.

INPUT:

OUTPUT:

INCSADRR:

PAGE

Figure 18.

PUSH
PUSH

LD
LD
LD
ADD
LD

POP
POP
RET

1-21

HL
BC
AF

THIS ROUTINE INCREMENTS THE ADDR REG VALUES STORED IN THE
(A KEY TO THE CODE IS THAT THE PAGE ADDR
IN THE BMCR TABLE IS5 IN THE FLIPPED FORM OF Z-80 ADDRESSES).

MBMSBMCR - NBR OF PAGES PER I/0 BLOCK
MBMSBACR+3/4 - BMC ADDR REG VALUES

MBM$BACR+3/4 - INCREMENTED BY 1

BC
HL

BC, (MBMSBMCR)
B,ZERD

HL , (MBM$BMCR+3)
HL,BC
(MBRS$BMCR+3))HL

HL
BC

(IR BESE IR SR SR B B 2R JE B BE JE BN BE AR BE R R K BE BE 2R BE BE 2R AR BF 2]

s*%% GET NBR OF PAGES USED wxx
s#%% I[N PREVIOUS OPERATION ®x%x
sGET ADDR REG VALUES BEFORE OPERATION

;%% UPDATE ADDR *x
s##% REG VALUES wxx

MBM Software (page 19 of 32),

214

R OE R OE K K KX % K KKK XK KN KKK KX EE KKK EEKXSE

N M M oAk W Ak K W K K W

NACRO-80 3,36 17-Mar-80 PAGE 1-22

N MK K K K KK K K K N K R XK N X KK KK KKK KRN KXKEK

i *
3*# THIS ROUTINE USES THE POLLED TRANSFER METHOD TO READ A *
3% A BLOCK OF DATA INTO A USER DEFIMED AREA. USER'S BUFFER *
s# MUST BE LONG ENOUGH TO HOLD THE REQUESTED MBM BLOCK. *
* *
3¢ INPUT: HL - ADDR OF BEGINNING OF BUFFER * 1
3% *
3% OUTPUT: HL - UNAFFECTED %
3* (HL) - MBM BLOCK PGINTED T0 BY BMC REGS *
i %
TE R R R R R R EEE R EEEEE R E R E KN R KRN EEERR NS

03EC° F5 READ: PUSH AF

03ED° C5 PUSH BC

03EE" DS PUSH DE

03EF" ES PUSH HL

03F0° CD 041C’ CALL WATESTRT sWAIT FOR BMC TO START READING :

03F3° 34 02B0° LD A, (MBNSPSIZ) sINIT sxx MAX PG *xx

03F6" 3C INC A 3 xx% SIZE %#x

03F7° 47 LD B,A 3 5% 4 1 wax

O3F8° OE 28 LD C,BMSDATA 3 INPUT PORT

03FA’ READSLP:

03FA' DB 29 IN A, (BMSSTAT) 36ET STATUS

03FC° CB 7F BIT BSYBPS A ;BUSY?

O3FE’ 28 10 JR 1,READSRT sNO - DONE

0400° CB 47 BIT FFRBPS,A sYES - DATA AVAIL?

0402° 28 Fé JR Z,READSLP } NO

0404° ED A2 INI H YES - READ A BYTE

0406° 20 F2 JR NZ,READSLP H LOOP IF PG NOT OVERFLOWED

0408° OE 09 LD C,PRTLN HEEEEREEEEEEERENERERNE;

040A° 11 0022° Lp DE,RDERR 3% ERROR - READ PAST END OF PAGE »

040D CD 00035 CALL CDOS I R EE RSN RN RN

0410° READSRT:

0410° El POpP HL

0411° N POP DE

0412° €1 PoP BC

0412 Fi por AF

0414° C9 RET
PAGE

Figure 18. MBM Software (page 20 of 32),

215

NACRO-80 3,36 17-Mar-80 PAGE 1-23

L

(2R 2R 2R 30 2N B 2N 3N BN S BE BE 2R BE B SR 2K B B BE B R B BE R 3K Y 3R 2R BN O |

3
i* ¥
3% THIS ROUTINE NONITORS MBM STATUS UNTIL CONTROLLER BMC *
3% BECOMES NOT BUSY. *
3* *
1% INPUT: N/A *
H * ;
3% OUTPUT: A - MBM CONTROLLER STATUS *
3* *
THR R R R H R R E R KX E R K EEE KR K EEEE KN EEEN KN
0415° WAITSTAT: 3
0415° DB 29 IN A, (BMSSTAT) sGET MBM STATUS
0417 CB7F BIT BSYBPS,A ;STILL BUSY?
0419° 20 FA JR NZ,WAITSTAT 3YES
041" CY RET 1
SRR K B I K R K R KRR KN E KK KKK KKK KK KR '
3% *
3% THIS ROUTINE MONITORS MBM STATUS UNTIL THE BMC BECOMES BUSY, #
* *
3% INPUT: N/A X
3* *
1% OUTPUT: N/A %
¥ *
TEOK K K K K N R E K RN K N K N KK KX KKK KKK N R KX KKK
041C" WATESTRT:
041C' F5 PUSH AF
041D° DB 29 WATELP: IN fA, (BUSSTAT) sGET BMC STATUS
041F° CB 7F BIT BSYBPS,A sHAS READ STARTED YET?
0421 28 FA JR Z,WATELP sN0, LOOP UNTIL IT DGES
0423° F1 PoP AF
0424 C9 RET
PAGE

Fiqure 18, MBM Software (page 21 of 32),

216

MACRO-80 3.36 17-Mar-80 PAGE 1-24

LI BE 2N 2R BN BE BN BE SR 2R 2R 2K 2R 2R BE B SR 2R BE BN BE NE 2R BF 2R 3R BE B NN 3% 3

i
* *
3* THIS ROUTINE SETS UP THE SYSTEM FOR PROCESSING MBM *
3* GENERATED INTERRUPTS, AND REINITIALIZES THE BMC FOR ¥
3* INTERRUPT 1/0. *
* *
s INPUT: MBMSBMCR+2 - BAC ENABLE REG VALUE * 1
i *
3% OUTPUT: MBMS$BMCR+2 - BMC ENABLE REG VALUE WITH NORMAL ¥ 1
* INTERRUPTS SET *
3% MBM$BMCR+3/4 - BMC ADDR REG SET TO 1ST PAGE OF *
i* 1ST BUBBLE *
3 BMC 35 INITIALIZED FOR INTERRUPT 1/0 ¥
3 *
HE R E R RN N RN R N N NN RN N

0425° NBMS$ISET:

0425 F5 PUSH AF

0426 E5 PUSH HL '

0427° 3EN LD A,0NE sk%% SET INTERRUPT xxx

0429' 32 0287° LD (INTFLG))A ye%% ENABLED FLAG xxx

042C° 3A 028D LD A, (MBMSBHCR+2) ;%% SET NORMAL INTERRUPTS *xx

042F° CB C7 SET INBPS,A ek WITHIN THE BMC LE L]

0431° 32 028D LD (MBMSBMCR+2) ,A j#x% REGC VALUE TABLE *xx

0434° CD 048D° CALL INTSINIT sREINITIALIZE MBR

0437° 3A 0038 LD A, (INTSRST) HEEERENEEEEEENER]

0438° 32 0288° Ld (INTSAY) ,A 3% SAVE OLD INTERRUPT =

043D° 24 0039 LD HL,(INT$RST+1) 3% RESTART OPERATION(S) #

0440° 22 0209’ LD CINTSAVHLD JHL 3% % % % % % % ® % % % & %

0443° 3E C3 LD A, JPSOPCD HE RN E N RN

0445° 32 0038 LD (INTS$RST) ,A 3# SET BRANCH TO *

0448° 21 0500° LD HL , INT$HNDL 3# INTERRUPT HANDLER *

0448 22 0039 LD CINTSRST+L),HL 3% % % % % % % % % % &

044E° AF XOR A HEEEEREERENNENENNENN

044F° 32 02A3° LD (RDSIZ),A 3% CLEAR READ & WRITE SIZES »

0452° 32 02A4’ LD (WRSI2),A HEEEEEEENNNRE NN

0455° El pPoP HL

0456° Fi pop AF

0457° C? RET
PAGE

Figure 18, MBM Software (page 21 of 32),

27

P —— ™

NACRO-80 3,35 17-Mar-80 PAGE 1-25

’*

LI BEEE JE 2R B BN SR R BE 2k BN B 2R BE BE 2R JE BE R BE R BE BK BE 2N B R 2R 2R 3N

x x

THIS ROUTINE SETS THE SOFTWARE SYSTEM FOR POLLED MM 1/0,
AND REINITIALIZES THE BMC FOR POLLED I/0.

W W A

INPUT: MBM$BMCR+2 - BNC ENABLE REG VALUE

k3

QUTPUT: NBMSBMCR+2 - BMC ENABLE REG VALUE WITH ALL
INTERRUPTS TURNED OFF
MBHSBNCR+3/4 - BMC ADDR REG SET TO 1ST PAGE OF
15T BUBBLE
BMC IS INITIALIZED FOR POLLED I/0

WO PP By P WP P WE s s PO BP B we s
[

»”
L N T N N B B A A

B4 % % R R E X R EEEEREEREXEREXREEREEREEEEE RN

0458° MBMSICLR:

0458° F5 PUSH AF

0459 €5 PUSH 8C

0454° D5 PUSH DE

0458° ES PUSH HL

045C° 34 02A7° LD A, (INTFLG) s#%# IS5 INTERRUPT PROCESSING %

045F° A7 AND A ;% ALREADY DISABLED? £33

0460° 28 26 JR 1,1C$RY 3YES

0462° AF XOR A sND, *#% CLEAR INTERRUPT axx

0463° 32 0287’ LD (INTFLG) ,A H ##% ENABLED FLAG *x«x

0468 F3 DI

0467° 3A 02A8° LD A, (INTSAV) EREEEE R R E KKK KN

0456A° 32 0038 LD (INTS$RST) ,A 1* RESTORE OLD INTERRUPT »

044D° 24 0249’ LD HL,(INTSAV+1) ;% RESTART OPERATION(S) «

0470° 22 0037 LD CINTSRST+1),HL 3% % % % % % % % % % % & &

0473° 3R 0ZRD’ LD A, (MBMSBMCR+2) ;##x CLEAR ALL Ligd

0475 BS FE AND OFFH-INBIT j#er INTERRUPTS e

0478° Es 82 AND IEBIT+1PRIT seen WITHIN THE BMC xxx

0474° 32 024D’ LD (MBHMSBMCR+2))A ;#%% REG VALUE TABLE xxs

047D° CD 02C6° CALL MBMSINIT sREINIT MBM SYSTEM

0480° OE 09 LD C,PRTLN SENEEEEEEEEREEREERRERNE
0482° 11 025B° LD DE,REINMSG 3% SYSTEN REINITIALIZED FOR POLLED 1/0 #
0485° CD 0005 CALL Cbos BEEEREEEENEEEREEEEREE
0488° EI IC$RT: POP HL

0489 N popP DE

0484 O PoP BC

0488° FI POP AF

048C° C9 RET

Figure 18, MBM Software (page 23 of 32).

218

048D’
048D°
048E’
048F°

0490°
0491°
0492°
0495°
0498°
0498’

049E°
0440’
04A2°
0444’
0447°
04aR°

044D°
04B0°
0482’

043’
0484’
0485’
0484’

MACRQ-80 3,34

F3
s
b5

F3
AF
32 024’
32 02AF’
CD 0415’
€D ¢3Cs’

3E 1t
D3 29
OE 09
11 014C°
€D 0005
Ch 0415°

ch 058D’
ED 56
FB

n
c1
F1
cy

17-Mar-80 PAGE 1-26

LR BE 2R 2R B BE 3N BN BE BN BE BE 2R BE BE BE BE 2 BE NE BY NE 3R BE BE BN BN BN B R N N

E 3

b
3
3* THIS ROUTINE INITIALIZES THE MBM WHEN THE SYSTEM IS IN *
s# ITS INTERRUPT 1/0 PROCESSING MODE. »
i *
3% INPUT: BMCR - TABLE OF BMC REG VALUES *
i .
3* OQUTPUT: MBM$BMCR+3/4 - ADDR REG VALUES ARE UPDATED H
* MBM PERIPHERAL SYSTEM IS INITIALIZED '
* ¥
TH R R R R K KK K R K R E K KRR N K N K E R KRR KR KKK KN
INTSINIT:

PUSH AF

PUSH BC

PUSH DE
sNOTE: THE INITIALIZE COMMAND CAUSES RANDOW TOGGLING OF THE DRG
3 INTERRUPT LINE (THIS IS AN UNDOCUMENTED BUT KNOWN BMC
3 HARDWARE DEFICIENCY). THEREFORE, WHEN INITIALIZING,
H DISABLE INTERRUPTS UNTIL INITIALIZATION COMPLETES.

DI

XOR A s¥%% GET EMC ADDKR REG %%

LD (MBMSBNCR+3) ,A %#x 10 1ST PAGE OF »a»

LD (MBMSBMCR+4) ,A 3xx 1ST BUBBLE R

CALL WAITSTAT sWAIT UNTIL BMC AVAIL

CALL SETS$BMCR 3SET BMC REGS

LD A,BNSINT s##% SEND THE BUBBLE #»»

ouT (BMSCMD) ,A s#%% INITIALIZE COMMAND %x%

LD C,PRILN BEEEEEENEEEEEEEEEEE

LD DE, ININSG 3% SYSTEM INITIALIZED FOR INTERRUPTS #

CALL CDos AR R R RN EE R R ERE KRR RN

CaLL WAITSTAT sWAIT UNTIL DONE

CALL IRESET sRESET INTERRUPTS AND STATUS REG

IN 1 ySET INTERRUPTS FOR JUMP TO LOC Y'38°

EI

POP DE

PoP 8C

POP AF

RET

PAGE

Figure 18, MBM Software (page 24 of 32).

21y

0487°
0487’

04B8°
0488’
04BE’

04C1’
04C3°

04C5°
04C4’
04C9’
04CB’
04CD°
04CF”
041’

0402’
04p3"

NACRO-80 3.34

F5

22 0245°
3A 02B0°
32 026"

3IE 12
D3 29

76

3A 02A3°
FE 14
30 F8
FE 00
28 01
76

F1
c?

17-%ar-80 PAGE

x & Kk K

INPUT:

»

QUTPUT:

P WP Bl GE e Se B B s
* »

»

INT$READ:
PUSH

LD
LD
LD

LD
ouT

IR$C8: HALT
LD
cp
JR
cp
JR
HALT

IRSRT: POP
RET
PAGE

1-27

THIS ROUTINE INITIATES AN MBM READ (WITH INTERRUPT
PROCESSING) TO A USER DEFINED BUFFER AREA.

HL - BEGINNING ADDR OF INPUT BUFFER

BUFFTR - PNTR TQ BEGINNING OF INPUT BUFFER

AF

(BUFPTR) ,HL
Ay (NBM$PSIZ)
(RDSIZ) ,A

A,BNSRD
(BMSCHD) ,A

A, (RDSIZ)
22D

NC, IR$CS
ZERO
Z,IR$RT

AF

R R R KRR EE R REEXEREEREREEREXEREEEREXRE

sINIT BUF PNIR
y##% SET UP NBR OF BYTES *xx
Pk TO BE XFERRED PTY)

je%% ISSUE wx
1#%% READ %%

sWAIT FOR A 22 BYTE INTERRUPT

sGET REMAINING BYTES TO BE READ

$ARE LESS THAN 22 BYTES LEFI?
sNO
$ARE EXACTLY 0 BYTES LEFT?

LAE 2R BE 2N 2N BN 2% 2N N BN BN R BE 2 BE BN X NF BN BX 2R NE 3N NE K 3N 3 3 BE N ¥ 3N

*
*
*
*
*
*
*
*
*

yYES, OP PROBABLY ALREADY COMPLETE

sWAIT FOK OP COMPLETE INT

Figure 18, MBM Software (page 25 of 32),

220

Sebia . ek cnihangilly

0404’
04D4’
04D3°
04D6’

0407°
04D9°

0408’
04DE’
04E0°

042’
04E4°
04E6’

04E8’
04EB’
04EE’
04F0°

04F3°
04F4°
04F7°
04F9"
04FB'

04FC’
04FD"
U4FE’
04FF°

MACRO-80 3.36

F5
s
E5

3E 13
b3 2¢

€D o41C’

CB 47
28 FC

OE 28
06 28
ED B3

22 02A%’
3A 02B0°

Dé 28

32 02A4°

76

3h 02A4°

FE 00
20 F8
76

El
ct
F1
cy

17 -Kar-80

L I I R

PO S S P P WE B Wl PP
L I S 3

*®

PAGE

INPUT:

OUTPUT:

INTSWRIT:

IWSWTL:

1wsCa:

PAGE

Figure 18.

PUSH
PUSH
PUSH

LD
our

CALL
BIT
JR

LD
LD
OTIR

LD
LD
sus
LD

HALT
LD
cp
JR
HALT

POP
pap
POP
RET

1-28

AF
BC
HL

A, BUSUR
(BMSCHD) ,A

WATESTRT
FFRBPS,A
Z, INSHT1

C,BNSDATA
B,40D

(BUFPTR) ,HL
A, (MBNS$PSIZ)
40D
(WRSIZ) ,A

A, (WRSIZ)
ZERO
NZ,INSCS

HL
5C
AF

LI BE B 3R BN BE BEBR Y 2R 2K BE R 2R BE B SR BE BN BE K BE BE BN BE BE BE BN NE N 3

THIS ROUTINE INITIATES AN MBM WRITE (USING INTERRUFT
PROCESSING) FROM A USER DEFINED BUFFER AREA.

*
¥
¥
*
HL - BEGINNING ADDR OF QUTPUT BUFFER *
*
BUFPTR - PNTR TO BEGINNING OF INPUT BUFFER *

¥

*

R B R X E X R R E R EE X EEEEREREEEREREEEREDNE

yer¥ GEND WRITE #xx
sexe COMMAND »ex

s¥%% WAIT UNTIL WRITE sxx
s#%% STARTS AND FIFD axx
s#%% BECOMES AVAILABLE %»»

3SET FIFD OUTPUT PORT
3 & QUTPUT LENGTH
sFILL THE FIFD

sINIT BUF PNTR

s#%% SET NBR OF L L]
3#%% BYTES REMAINING wwx
s#%% IN OUTPUT BUF wux

tWAIT FOR 22 BYTE INT

sGET NBR OF BYTES TD BE WRITTEN
{WRITE BUFFER EMPTY?

INO

3YES, WAIT FOR OP COMPLETE INTERRUPT

MBM Software (page 26 of 32).

221

0500°
0500°
0501°
0502’

0503
0505

0506°
0508°
0508’
050D°

0510°
0512
0515°
0518’
0514’

051D’

0520°
0522°
0524’
0526’
052y°

052C
052’
0530°
0532’
0535

0538’
0534’

MACRO-80 3.36

F5
C3
D5

DB 29
47

CB 78
€2 0558’
Ch 48
CA 0546°

0E 09
11 0049°
€D 0005
0E 09
11 0071’
CD 0005

CB 50
28 08
OE 09
11 0090’
CD 0005

CB 58
28 08
0E 09
11 00B1°
€D 0005

CB 40
28 08

17 -Nar-80

PAGE

INPUT:

OUTPUT:

INTSHNDL:

1H$C3:

IH$C4:

Fiqure 18,

PUSH
PUSH
PUSH

IN
LD

BIT
JP
BIT
JP

LD
LD
CaLL
LD
LD
CALL

BIT
JR
LD
LD
CALL

BIT
JR
LD
LD
CALL

BIT
JR

1-29

% THIS ROUTINE HANDLES MBM INTERRUPTS BY DETERMINING ITS
SOURCE AND JUMPING TO APPROPRIATE PROCESSING ROUTINES.

RDSIZ - NBR OF BYTES REMAINING TO BE READ
WRSIZ - NBR OF BYTES REMAINING TO BE WRITTEN

RDSIZ & WRSIZ UPDATED (BY INT$?? SUBROUTINES)

AF
BC
DE

A, (BMSSTAT)
ByA

BSYBPS,B
NZ, IHSRW
0PFBPS,B
Z,1H$0C

€,PRTLN
DE,ERRNSG
cDas
C,PRILN
DE, WHONOZ
£D0S

UNCBPS,B
7,1H$C3
C,PRTLN
DE,, UNCERK
£oS

CORBPS, B
Z,IHsC4
C,PRTLN
DE,CORERR
£Das

TINBPS,B
Z,IH8C5

(X 2R IR B IR 2 BN BE BE BN 2 20 2N BN BX. 2R B B AR 2R 2R BE R K K BE BE B B B B

s¥%% SAVE STATUS *ux
s#x% N B REC ##

1BUSY?
sYES

;0P FAIL?
sHo

TYES, ¥ % B % % % % H XX RN EY
3 * ERROR GENERATED INTERRUPT
3 EEEEEENEENE NN
y¥%¢ UNDETERMINED ERROR %%
yexx (WILL BE OVER-WRITTEN sexx
y#xx ONCE ERROR IS DIAGNOSED) %«

3UNCORRECTABLE ERROR?
3ND
PEREEREEE R R R RN

3* UNCORRECTABLE ERROR
IEEEEEEEEEEE

sCORRECTABLE ERROR?
sNO

TER KK KK KKK KK
1*# CORRECTABLE ERROR %
HEREEE NN R NN

sTINING ERROR?
INO

MBM Software (page 27 of 32).

222

L2 2R BE IR 2 JE BN B K 2R 2 B SR R 2R BE B R 2R BE B BE K BR BE 2K 2N BE B NK N 3)

*
*
*
#
*
*
*
*
¥
*

MACR0-80 3.36 17-Mar-80 PAGE 1-30
053C' OE 09 LD C,PRTLN HEEEREEEN
053" 11 0002 LD DE,TIMERR ;# TIMING ERROR #
0541 CD 0005 CALL CDOS HEEENEEER
0544° IN$CS:
3 CALL MBMSFFRE sRESET FIFO
H CALL WAITST 1WAIT FOR RESET COMPLETE
0544 18 26 JR TH$DN
0545 37 0243’ IHs0C: LD A, (RDSIZ) 3e%x IS A READ #xx
0549° FE 00 cp 1ERD jexe PENDING? wxx
0548° C4 0575 CALL NZ,INT$RD $YES, FINISH READING BUF
0S4E° OE 09 LD C,PRTLN JHE KK R R KK
0550° 11 O00F3’ LD DE,0PCNHSG 3% 0P COMPLETE *
0553° €D 0005 CALL CDGS KKK KK KK
0556° 18 14 JR 1HSDN
0558 34 0243’ IH$RW: LD A, (RDSIZ) 3% 15 A READ #¥x
0558° FE 00 ce ZERO shix PENDING? %
035D° C4 0575° CALL NZ,INT$RD sYES, READ MORE AND RETURN
0540° 20 0D JR NZ,IH$RT H TO INTERRUPTED ROUTINE
0542° 3A 0284’ LD A, {(WRSI2) ye% IS A WRITE *xx
0545 FE 00 ce ZERO yemn PENDING? wws
0547* C4 0399° CALL NZ,INTSWT sYES, WRITE MORE AND RETURN
056A° 18 03 JR THSRT 3 TO INTERRUPTED ROUTINE
056C° €D 05BD’ IH$DN: CALL IRESET 1RESET INTERRUFTS AND STATUS REGS
056F° D1 [H$RT: POP DE
0570° Ci pPoP KC
0571 F POP AR
0572' FB EI
0573° ED 4D RETI
PAGE

Figure 18, MBM Software (page 28 of 32).

223

MACRO-80 3,36 17-Mar-80 PAGE 1-31

»*x

AR 20 2 B 2N 2% 2 BN R K 2R BE BE BE BE B BE B SR 2R BE BE K K 2R BE 2% BN R B

;
3* *
+# THIS ROUTINE SUPPORTS MEM READING WHEN INTERRUPT 1/0 IS *
t* REQUIRED, DATA IS XFERKED FROM THE MBM INTO A USER DEFINED
t* AREA, BLOCK LENGTH CHECKS AKE NOT MADE, SO USER'S BUFFER *
i* AREA MUST BE LONG ENOUGH TO HOLD THE REQUESTED WBM BLOCK, #
3% *
i# INPUT: BUFPTR - POINTER TO NEXT CHAR IN READ BUFFER *
3* *
i# OUTPUT: BUFPTR - UPDATED TO NEXT OUTPUT CHAR *
% #*
;**i****l**l’*****l**i*******ll*ll'*

0575° INT$RD:

0575° FS PUSH AF

0576 €5 PUSH BC

0577° ES PUSH HL

0578° 2A 0245’ LD HL , (BUFFTR) sSET BUF PNTR 1

0578° O 28 LD C,BNS$DATA $INPUT PORT

057D 3A 023’ LD A, {RDSIZ) ;GET NBR OF BYTES REMAINING IN BUF

0580° FE 16 cp HALFUL sLESS THAN HALF OF FIFO BUF LEFT?

0582 38 07 JR C,IRDSC2 $YES

0584 06 16 LD ByHALFUL sNG, SET HALF FIFO BUF LENGTH

0586° 90 sus B sDECREASE NER OF BYTES REMAINING

0587° ED B2 INIR 3READ A BLOCK

0589 18 04 JR IRDSDN

0588° 47 IRD$C2: LD B,A {SET NBR OF KYTES REMAINING

058C° AF XBR A sCLEAR NBR OF BYTES REMAINING IN BUF

058D ED B2 INIR sKEAD FINAL KLOCK

0S8F° 32 0243’ IRD$ON: LD (RDSIZ) ,A iSAVE NBR OF BYTES LEFT IN BUF

0592° 22 0245’ LD (BUFPTR),HL 3SAVE PNTR TO NEXT BYTE IN BUF

0595° El POP HL

0596' C1 POP BC

0597° Fi POP AF

0598’ €9 RET
PAGE

Figure 18. MBM Software (page 29 of 32),

224

MACRO-80 3.36 17-Mar-80 PAGE 1-32

e s b

»

LR 2R B0 20 B B B 2N BE BN BE B B BE BE R R BE K BK 2R BE 2K B BE 2K R 2R BE 3R BN

3
3 *
3% THIS ROUTINE SUPPORTS MBM WRITING WHEN INTERRUPT 1/0 IS ¥
3* REQUIRED. DATA IS XFERRED FROM A USER DEFINED OUTPUT *
3*# BUFFER TO THE mMBH. *
i *
3% INPUT: BUFPTR - POINTER TO MEXT CHAR IN WRITE BUFFER * ;
* %
3% OUTPUT: BUFPTR - UPDATED TO NEXT OUTPUT CHAR *
4 *
TE R K R K R K B K K K K K E KK KR R KN K KR K KKK KR KKK
0599° INTSHT:
0599 F5 PUSH AF 1]
0594° €5 PUSK BC
059" ES PUSH HL j
059C° 27 0245 LD HL, (BUFPTR) 3SET BUF PNTR q
0S9F" OE 28 LD C,BMSDATA ;0UTPUT PORT ‘
05A1° 34 0274’ LD A,(WRSIZ) ;GET NBR QF BYTES REMAINING IN BUF |
054" FE 16 cP HALFUL sLESS THAN HALF OF FIFQ BUF LEF1?
05A4" 38 07 JR €,IuR$C2 $YES
05A8° 06 16 LD B,HALFUL 3NO, SET HALF FIFO BUF LENGTH
05AA° 90 SUB B sDECREASE NBR OF BYTES REMAINING
05AB° ED B3 OTIR sWRITE A BLOCK
054D 18 04 JR TWRSDN
05AF° 47 INR$C2: LD B,A 3SET NER OF BYTES REMAINING
0SB0 AF XOR A sCLEAR NBR OF BYTES REMAINING IN BUF]
05B1° ED B3 OTIR sWRITE FINAL BLOCK
05B3° 32 0244’ TWR$DN: LD (WRSIZ),A ;SAVE NBR OF BYTES LEFT IN BUF
05B6° 22 0245’ LD (BUFPTR) ,HL 3SAVE PNTR TO NEXT BYTE IN BUF
0589’ El POP HL
0Sea° Ci POP BC
058B° Fi POP AF
0SBC* C9 RET
PAGE

Figure 18. MBN Software (page 30 of 32),

225

. N

MACRO-80 3,36 17-Nar-80 PAGE 1-33
;**“*l***l’************llil*l*****l
3 % {
<% THIS ROUTINE CLEARS MBN INTERKUPTS AND CLEARS THE BNC .
% STATUS REG. *
H *
s INPUT: N/A ¥ 1
;l #* j
s+ OUTPUT: BNC STATUS REG = 00 *
* DRQ AND INT INTERRUPT LINES ARE CLEARED *
133 *
;*****************************ll**
058D" IRESET:
058D’ FS PUSH AF 4
0SBE’ €5 PUSH BC i
0SBF* DS PUSH DE i
05€0° 3E 20 LD A,BMSKES s#¥¢ RESET INTERRUPTS & wxx ‘
05C2° 03 29 QUT (EMSCND),A sexk CLEAR STATUS REG %ax L
0SC4” O 09 LD C,PRTLN EEERPEEEEREEE RN ‘
05cs’ 11 0121° LD DE,RSTNSE +% STATUS/INTERRUPT ARE RESET *
05Cy* CD 0005 CALL CDOS TEEREE R R R KRR KK NN
0scC’ DB 29 IRS: IN A, (BNSSTAD) ;GET BNC STATUS
0SCE* A7 AND A ;IS STATUS CLEAR (INPLIES INT ALSO CLR)
0SCF* 20 FB R NL,IRS sND, WAIT
0sD1° M PP DE {
0502° Ci POP BC
0503 Pt POP AF
0504 C9 RET

END

Figure 18, MBM Software (page 31 of 32),

226

r-———-——-————-——-——————-———-—-—-

Nacros:

Symbols:
ADRO
BN$ABT
BMSINT
BMSRCD
BMSRSK
BMSWBR
BRLEN
CORBPS
ENR
FIFQ

4 18811
TH$CS
THSRW
INCSAD
INTSRD
INTSHT
IPBPS
IRDSDN
TWSUT!
LF
MBMSIC
MBM$PY
HBMSRS
MBMSST
MBASWX
OPCBPS
PRTLN
RDSIZ
REINSG
TINBPS
WAITST
WHONOZ
WRSIZ

MACRO-80 3.36

000E
0019
0011
001C
0014
0014
0005
0003
000D
0000
0002
0544°
0558°
03DA°
0575’
0599°
0007
058F°
04DE’
000A
04581°
03821"
03471°
02811"
03611"
0006
0009
02A3°
0258°
0004
0415°
0071
02p4°

ADR1
BM$CND
BRSPRG
BMS$RD
HN$SRE
BH$WNB
BSYBPS
CORERR
ERRNSG
HALFUL
IEBPS
TH$DN
INSRT
ININSG
INTSRE
INTFLG
IR$C8
IRESET
IWR$C2
NBNSAB
MBMSIN
MBNSRC
MBM$RX
NBNSWB
NBMSWZ
OPCNSG
RCDBPS
READ
RSTMSG
TINERR
WATELP
WRSRT
XFRBPS

No Fatal error(s)

17 -Har-80
000F BLRO
0029 BMSDAT
001E BMSRBL
0012 BMSRES
001F BMS$STA
0010 BMSWR
0007 BUFPTR
00B1° CR
0049 FFRBPS
0016 ICSRT
0001 IH$C3
056C° IHsOC
02E1° INBIT
014C° INTSHN
04B7° INT$RS
0247 INTSAV
04C5° IRSRT
05BD° IRS
05AF' IWRSDN
037S51' MBHSBM
02C41° NBNSIS
03A31° MBMSRE
Q2FF1° MBMS$RZ
02B41° MBNSUR
035691° NONSUP
00F3" OPFBPS
0005 RDSRT
03EC’ READSL
0121° SETSBM
00D2° UNCBPS
041D° WATEST
0340° WRSWT1
0003 ZERD
Fiqure 18.

PAGE

0008
0028
001B
0020
0029
0013
02A5°
000D
0000
0488°
052C
0546°
0001
0500°
0038
02a8°
04D2°
0sCC’
0583’
02481"
04251°
02E31"
039DI"
030Ct’
0389°
0005
02FA°
03FA°
03Cs°
0002
0s1C°
0325°
0000

BLK1
BMS$FRE
BMSRER
BHS$RFS
BNSWEL
BH$NSK
cbos
DHABPS
FFRMSG
1CDBPS
IH$C4
THSRT
INBP3
INTSIN
INTSUR
IPBIT
IRD$C2
IwsC8
JP$CFC
MBMSFF
NBM$PS
MBMSRF
MBM$SR
MBM$US
ONE
PRTEND
KDERK
READSR
SUPNSG
UNCERR
WBLBPS
WR$WT2

000C
001D
0015
0018
0017
0014
0005
0002
0289°
0006
0538°
056F"
0000
048D’
04D4"
0080
058B°
04F3°
00C3
03A71"
02B01"
036FI”
037CT’
03831"
0001
0024
o022°
0410°
0000°
0090°
0004
032F°

MBM Software (page 32 of 32).

227

IV. User's Manual

The MBM Interactive Development System (MIDS) described
in the following manual is an S$-100 based peripheral device
used for troubleshooting and verifying operation of Intel
7110 MBM's and their related support IC's, Once a user 1is
familiar with MBM operating characteristics (see Ref 3), the
use of MIDS is straightforward. It requires only that the
user be able to log onto the host system and initiate
execution of the program called MIDS. Software prompts the
user for subsequent inputs. In addition, a menu of available
operations can be displayed at anytime to assist in input

selection.

System Start-up

The following sequence describes how to get started with

MIDS.
l. Turn off power.

2. Insure BPK-72 to S-100 interface card 1is
seated in the motherboard.

3. Turn on power.
4, Boot the Operating System.

5. Type "MIDS"™ on console (ie, start system
execution).

6. Console will prompt for additional information,

a0

Command Summary

Once MIDS execution begins, the console displays a help
menu and prompts the user to enter an execution command. The
help menu lists all valid commands and has the following
appearance:

k%%%* MBM COMMAND MENU **%%%x

0 - WRITE B/L REGISTER MASKED] - INITIALIZE

2 - READ BUBBLE 3 - WRITE BUBBLE

4 - READ SEEK 5 - READ BOOTLOOP REGISTER

6 - WRITE BOOTLOOP REGISTER 7 - WRITE BOOTLOOP

8 - READ FSA STATUS 9 - ABORT

A - WRITE SEEK B - READ BOOTLOOP

C - READ CORRECTED DATA D - RESET FIFO

E - MBM PURGE F - SOFTWARE RESET

H - DISPLAY COMMAND MENU I - INITIALIZE MBM BUFFER

J - SET INTERRUPT 1I/0 K - SET POLLED 1/0 PROCESSING
P - PRINT MBM BUFFER Q - READ BMC ADDR REG (PRINT)
R - READ FIFO (AND PRINT) S - PRINT BMC STATUS

U - SET BMC REG VALUES V - PRINT BMC REG VALUES

W - WRITE FIFO X - EXIT TO CDoOS

To execute one of the listed commands, the user must enter
the single letter appearing to the left of the desired
operation title. Commands requiring additional information
will prompt the user for it as needed.

Of the 28 operations available on the command menu, the
first 16 correspond directly to physical Intel 7110 commands.
Therefore, an explanationm to commands 0 through F is not
reiterated here, but can be found in Appendix E under the

BPK~72 Bubble Memory Prototype Kit User's Manual section (Ref

2: 3-10 - 3-13)., The remaining 12 commands are used for
development support and are explained in the following

paragraphs.

229

H - Display Command Menu. This command lists the menu

illustrated above.

I - Initialize MBM Buffer. MIDS software maintaims an 4

204 byte buffer. This is sufficient to hold up to three MBM

pages (3 * 68 = 204), The Initialize MBM Buffer command

i

provides a way to set the software buffer to a known value
before am output operation.
Following initiation of the "I" command the console will

prompt the user for an initial value which is put into the

first byte of the buffer. Then an increment value, entered
after a second prompt, is used to ripple values throughout
the buffer. For example, an initial value of OlH and an
increment of OlH provides 204 bytes with the following
hexidecimal pattermn: 01, 02, 03, ... CA, CB, CC.

J - Set Interrupt 1/0 Processing, This command enables

interrupt I/0 processing by setting the Enable Register
within the BMC to interrupt when an operation completes.
Other interrupt conditions can be enabled via the Set BMC
Register Values (U) command.

Interrupt I/0 is somewhat limited. The interrupt
handling routine is set to recognize operation complete and
error interrupts. In addition, FIFO half full interrupts are
processed only for MBM Read (2) and Write (3) commands. All
other interrupts are essentially ignored.

K Set Polled I1/0 Processing. Polled I/0 is the normal

operating configuration for MIDS, The Set Polled I/O

Processing (K) command is provided to return MIDS software to

230

its normal configuration following interrupt I/0 processing.
In addition to resetting MIDS software, all interrupt enable
bits within the BMC are cleared.

P - Print MBM Buffer on Console. This command formats
and dumps the hexidecimal byte values found in the software
I/0 buffer. Two slightly different formats are printed
depending on whether error correction is enabled. With error
correction only 64 bytes are diplayed per MBM page. Without
error correction, all 68 bytes per page are displayed.

Q - Read BMC Address Register (and Print). This

—— s — —— —— e .

command reads the BMC Address Register and prints it on the
console.

R Read FIFO (and Print). The BMC contains a 40 byte

FIFO as a data buffer between the processor and the bubble
device. The "R" command dumps the FIFO to the console.

During the FIFO read, the first byte of data is lost.
This loss of data results from software implementation
restrictions. To allow for MIDS flexibility, BMC registers
must be initialized before each FIFO read. This
initialization operation destroys the first byte in the FIFO
(Ref 3:3-8).

S - Print BMC Status. This command reads the BMC Status

—_— . e et

Register and prints it on the console.

U - Set BMC Register Values. Registers within the BMC

define operation of the MBM peripheral, The "U" command

provides a way to change these register values so that the

BMC can be configured for specific development tasks. (Ref

2:3-2 - 3=7)
Individual register values are set based on responses to
console prompts. The f£irst prompt:
NUMBER OF PAGES PER I/0 BLOCK =
requests information for setting the Block Length Register.
Answers to the next set of prompts:
ENABLE NORMAL INTERRUPTS? (Y/N/Return)
INTERRUPT ON ERRORS? (Y/N/Return)
MAXIMUM TRANSFER RATE? (Y/N/Return)
READ CORRECTED DATA? (Y/N/Return)
INTERNALLY CORRECT DATA? (Y/N/Return)
are used to generate an Enable Register value. Note that
software will not allow interrupts to be enabled unless the
system is in interrupt I/0 mode (initiated by "J" command).
In addition, software allows only one form of error

correction to be enabled at any one time. The final prompts:

WHICH BUBBLE?
RECORD NUMBER (3 HEX DIGITS)?

request data for initializing the Address Register.

Some MBM I/0 operations update the Address Register to
point to the next available MBM page. The "U" command is
capable of leaving this and other register values unchanged.
Any of the register fields that can be changed by the "U"
command can also be left unchanged with a "Return" response.

VYV - Print BMC Register Values. BMC registers are reset
before each MBM operation from values saved in memory. While

the "U"™ command changes these values, the "V" command

displays them.

232

W - Write FIFO. This command dumps the first 40 bytes
of the 204 byte software I/0 buffer to the BMC FIFO.

X - Exit to CDOS. This command returns execution

control to the operating system.

Command Features

Not all commands involve physical access to the MBM
peripheral. Following initiation of commands that do, the
peripheral status is automatically printed. The status that
is displayed may at times present false images of actual
peripheral status. This happens because some instructions do
not complete before the status is displayed. This is not a
fault, but rather a debugging frature of MIDS. This allows
the user to observe the results of an operation and to
continue processing without having to wait for a valid status
which may never come.

Status' that indicate an operation has completed have
their most significant bit off, and only one of their next
two significant bits on (Ref 2:3-3). On occassions when an
unexpected status 1is displayed, execution of the Print
Status (S) command usually provides enough delay so that the
expected status is shown. If this request results in another
apparently bad status, chances are that an MBM fault exists.

Most MBM commands await completion of previous
operations before they start executing. Attempted eXecution
of such commands when the most significant bit of the BMC
status (the busy bit) is set, results in a possible infinite

loop waiting for the MBM to become available. So, before

233

entering a command, the user must insure that the MBM status

is not busy. One way to accomplish this is via the Abort (9)

command.

MBM jnitialization

The following sequence of commands insures that the MBM
peripheral is set up to properly process user requests.
First, an MBM Abort (9) command is sent to terminate any
currently executing command and to clear BMC status. The
status returned should be either 40H or 41H. After obtaining
either one of these status' the MBM Initialization (1)
command should be executed. Again the final status should be
either 40H or 41H. Any other status, for either command,

indicates problems that must be solved before other commands

in the range of 0 through F can be executed.

Interrupt Processing

An interrupt processing capability is available with
MIDS only to prove that MBM interrupt facilities work as
claimed by the manufacturer. The primary advantage of
using interrupts, concurrent processing of tasks, is not
supported by MIDS. Following initiation of an MBM command, a
wait loop is entered until all interrupts related to the
requested operation are processed, Consequently, each

command executes to completion before another is started.

e

Exrrors

User errors fall into two categories, One type 1is

detected by MIDS sroftware, while the other is found by the
operating system. &rrors caught by MIDS software cause an
error message to be printed, execution of the current command
to cease, and return to the MIDS command entry level. At the
command entry level the user can retry the erroneous command,
or try; a different command. Errors caught by MIDS are:

INVALID COMMAND - requested operation does not match
those available on the command menu;

INVALID INPUT - additional data requested during a
command is invalid; some invalid inputs do not
cause an error message, but instead, cause the
original question to be asked again.

Errors found by the operating system do not have the
same gracious effect as those errors found by MIDS.
Operating system errors cause an error message to print and
control to pass back to the operating system level. The user
may then reexecute MIDS or, in extreme cases, reboot CDOS.
The most common way to get an operating system error is to
request an MBM opertion that is not supported by interrupt

processing, while MIDS is in its interrupt mode. See command

"J" for a discussion of valid interrupt operations.

235

Appendix D

IFPDAS IR Debugging Tool

Contents
I. Introduction e 4 e s o e s & e e s a2 s a4 e e e e 237
IT. User INStruCLiONS + o« + o« o o s o o o o o o o o o « 238

Monitoring « + « « 4 ¢ o ¢ o o o o o « & o o o & . 238
Single Step + « « « & o 4 o « o + e o o o o o &« o o 238
IR Reset « & 6 s s s & 4 e & e e & e s 4 e o s & a 239
Memory/Peripheral Read« .« & ¢« & « « « « o 239
RAM/Peripheral Write . . + ¢ + o o o o s o « o« o o 240

II1. Hardware e e & & 4 s+ 2 e s+ 4 e s+ s a e o o o o o o 241

Schematic DIagrams . « ¢ + + « « o « o« o o o o« o o 241
IR Bus Buffers « « ¢« ¢ o o o « o o« o o o « o o 241
Bus Monitor e 4 e 4 s v e e s e 4 e e e e s e« 244
IR ReSet « o o ¢ ¢ o o« o o o o ¢ a o o o« o o =« 247
Single SteP « ¢ « 4+ o 4 s s e s e 4 e e« o o o 248
Input/OULPUL & & « « « & o« o o o o « o o « o & 251
IC MaP & &« &« ¢ o o o s o« o o o s o o o o o o« o s « 253

236

IFPDAS IR Debugging Tool

I. Introduction

The IFPDAS IR described in this thesis is a prototype.
Because of this, it requires tools for software development.
One such tool is the IFPDAS Inflight Recorder Debugging Tool
(RDT). The RDT is a hardware front panel for the IR
processor. It does not contain a monitor program or any
other software, but does give programmers a way to trace
software execution.

The RDT is designed so as not to affect IR operation.
The only impact of RDT design on the IR is bus loading. As
explained later, the RDT preseuts single P2CMOS loads to many
of the pins on the IR busses, The addition of these single
loads 1is transparent to IR operation.

No IR hardware changes are required to accommodate the
RDT. This fact. coupled with bus loading transparency, means
that the IR will operate identically with or without the RDT.
Thus, hardware changes do not have to be factored into

operating predictions whenever the IR is detached from the

RDT.

237

II. User Instructions

The RDT is a hardware front panel for the IR processor.
Capabilities that the RDT provides are:
1. monitoring address and data busses,
2. single stepping through programs,
3. resetting the IR processor,
4. reading a byte from memory or a peripheral, and
5. writing a byte to RAM or a peripheral.

Another capability that users do not explicitly see is
the one for unimpeded operation of the IR. The IR canm run
independent of the RDT in two ways. One 1is with the
interface cable between the IR and RDT detached. Another way
is to put the RDT in "RUN" (SW106) mode with all other
debugging functions disabled. A beanefit of this method 1is

that the hexidecimal displays will monitor program execution

and provide feedback on its operation.

Monitoring

Monitoring activity takes place during program
execution, Programs execute in one of two modes, full speed
or single step. During both modes, hexidecimal numbers
displayed on the front panel reflect the address of the

currently executing instruction,

Single Step

The combined use of switched SW106 and SW107 allow users
to execute an IR program with breaks between instructions,

To enable single step operation, SW106 is switched to "S/S".

238

As soon as this happens and the current instruction completes
execution, the IR processsor halts to await a step command.
The momentary switch, SW107, transmits this command when
depressed. Each time SW107 is toggled one IR instruction is
executed. When SW106 is in its "RUN" position, SW107 is

disabled.

IR Reset

Reset action takes place regardless of other RDT switch
settings. Whenever SW112 is depressed, the IR processor is
forced to restart program execution at hexidecimal location
0000H, This 1s the same address where program execution
begins upon power up. Because power up automatically causes
an IR Reset, performing a reset through the RDT is not

necessary to start program execution.

Memory/Peripheral Read
When used together, SW108, SW109, SWwll0, and SWI1ll

provide the IR with a memory and peripheral input capability.
To perform a read, SW11l0 is set to "RD". Switches SW108 and
SW109 determine the input source and enables SWIlll, the
read/write strobe. When the strobe is toggled, the byte at
the address shown on the hexidecimal display is latched into
the data display. The action of the read strobe is disabled
whenever both SW108 and SW109 are in their "NOP" positions.
After choosing to perform an I/0 operation (SW108 = MEM
or SW109 = PER) and before toggling the read strobe, the

address display can be changed to a user defined value.

239

VDUV VY

o e A

Individual digits are incremented by depressing the switch
directly below the displays. Note that peripheral addresses
occupy only one byte, and must be entered in either the two

high-order or the two low-order hexidecimal digits.

RAM/Peripheral Write

The RDT write operation dumps the informationm shown in
the data display to the memory or peripheral address shown in
the address display. Write operations work similar to the
read operation described above. With SW110 set to "WR",
SW108 and SW109 determine the type of output to be performed,
while SW11]l determines when the operation will occur. One
obvious difference between the read and write operations is
that the data display must be initialized before the write
strobe is toggled. Anothar difference is that a memory write
operation is restricted to the RAM address space. Memory

read operations cam also access EEPROM addresses.

240

III. Hardware

Schematic Diagrams

Instead of having one large schematic diagram, RDT
hardware is described using smaller, functionally grouped
diagrams. When combined as one, the individual diagrams
completely define the RDT. The rule that binds the diagrams
is signal naming conventions. From one diagram to the next,
common signal paths have identical names.

Most control signals found in the following schematics
are prefixed with either an "O0" or an "I"., An "O" prefix
indicates that the signal originates from within the RDT
hardware and is "Output" to the IR bus. Signals "Input” from
the IR bus are preceeded with an "I", Signals with no prefix
are generated and used intermal to the RDT. Control signals
may also have a postfix of "*" to indicate that they are an
active low -ignal,

Another standard feature of RDT hardware is that all
switches are debounced. The debouncing circuit 1is
implemented in every case by a data flip-flop (FF) with
preset and clear inputs. Its theory of operation 1is
presented in the discussion of the IR Reset function.

IR Bus Buffers. The interface between the IR bus and

the RDT is fully buffered. Figure 19 shows that all signals
- with the exception of OWAIT*, OBREQ*, OPS*, and ORESET-IN¥*

~ are connected via P2CMOS buffers. So, RDT inputs present

241

aro
if
! &3
DATA BUIS — _loo b C] 1]@._.”%?
_‘I % t ¢ 7m TR A \
0,8 L, ey OUTCNTRL
=l e X2 -
—[GND T o 1
A00R 8US ~ Llagt2 w T WK
— { a /]
sl =
=i %'ﬁﬁ s
] _‘!% T' F)
nog i @
= s
Q L
galzzﬁ s 7= S13
T}i ;g 15 T A3) 214
g 23
CNTRL BYS / —lm T&_' TN CNTRL

Figure 19. RDT 1/0 Buffers.

only single P2CMOS loads to the IR bus; and outputs have the
same drive capacity as components of the IR. The three
remaining signals are output to the IR control bus through
open-collector gates.

IR signals required by the RDT fall into three
categories: bidirectional, input and output. Placement
within a category depends upon when and how individual
sigonals are enabled through a buffer. Data and address
busses, which provide both input and output for the RDT,
are bidirectional, Control bus signals S0, S1, RD*, and
BACK* are sources of input. Output signals are the XWAITY,

BREQ*, PS*, RESET-IN*, RD*, WR*, and IO/M* control lines.

242

AR Bt et e S A

While RD* appears both as an input and an output signal, it
is not considered bidirecti1onal because it is buffered by B26
as an input, and by B27 as an output.

Bidirectional lines are buffered by B23, B24, and B25.
These 82PC08, Bidirectional Transceivers, operate
continuously with their direction of transmission determined
by the RDT function being performed. When the RDT is in a
monitor or single step mode, all three transceivers act as
input buffers. In the memory/peripheral write mode, they are
output buffers. However, when reading memory or a
peripheral, B25 is an input buffer and B23 and B24 are output
buffers. The two OR gates in the upper part of Figure 19
provide direction control logic for these three transceivers.

IR lines categorized as input signals are buffered by
B23. The input buffer is hardwired to transfer data from the
IR to the RDT continuously, The two OR gates fed directly
from B26 are used as a second level of input to increase the
fan-out of the P2CMOS IC's for driving the LSTTL circuitry of
the RDT.

IC's B27 and B28 are output buffers. To preclude bus
contention problems, ORD*, OWR*, and OIO/M* use the tri-state
feature of the 82PC08. During operations where the RDT does
not require control of IR resources, the output buffers are
disabled. Neither monitor nor single step operations need
control over the IR to accomplish their tasks. However, I/0
operations must use the IR buses, Once an I/0 operation

gains control of IR resources, BREQ* + BACK* = 0, the 82PCO08

243

is enabled and signals generated by the RDT are sent to the
IR.

The four output signals which do not pass through
Bidirectional Transceivers - OWAIT*, OBREQ*, OPS*, and
ORESET-.N* ~ are interfaced to the IR via 7417 open-collector
buffers. The reason open-collector buffers are required 1is
that corresponding signals on the IR control bus are held
normally high through pull-up resistors. To drive these
lines low, open-collector gates are used.

Bus Monitor. Hexidecimal displays are provided for

monitoring the IR data and address busses. Toggle switches
and counters add the capability for initializing these busses
whenever the RDT is in an I/0 operation mode.

Before discussing construction of the monitors, an
understanding of the differing functional requirements betwen
the data and address monitors is useful, While programs
execute, the RDT is in a monitoring mode, That is, the
addrtess monitor reflects the addresss of the currently
executing instruction and the data monitor is blank. In its
1/0 mode the RDT gains control of the IR busses from the
NSC800. Regardless of whether an input or an output
operation is being performed, the value in the address
monitor is gated to the IR address bus. Similarly, the data
monitor is gated to the IR data bus, but only during an
output operation. During input the data monitor reflects the

value found on the data bus.

244

oan—” in3 C3X
3 7 LA 3
o] 1 if 1§
4 9 =g ' Tl -5
N———IN, CLR
o 3 ghiT _
CLRCVID -
13
6
CIR sw
+5 TTs G CtF 0 v jox
E
82y . '
12/9 8/
%4 ‘OUTJ Z 3 7
/7673' 2 t 3715
E‘ 7
ouTga i— o
EN{1
6
—]
OBREQ 3 5%‘*
Iaﬂmj@ 1
WR
Figure 20. Data Bus Monitor.
C3X =T &
i 12 3 D4X
AQDR w1, 3 3 0O LA
— b 74OE { o |
! a] oL
N—2ve 3 g :
cLeéRS . §
10
L CNTL swi0 %
X e S sx D:Lv P/S_'Lo
ouT3 52X 4 o) |2 7 Bt e Ul
uTe L [l]
PUTT 3 B
! §
]
1S! |OB Ny
| 150 IBACK
Figure 21. Address Bus Monitor.

245

Figures 20 and 21 show circuits for monitoring and
initializing four bits of a bus. In both diagrams INO
represents the least significant bit of the four bit group.
B2X, C3X, D4X, SWI10X, and the OR gate connected to CLK] of
C3X are reproduced twice for the data monitor and four times
for the address monitor. This covers all 24 bits of the data
and address busses. Other logic gates shown in the figures
determine when particular components are enabled.

Figure 20 shows the circuit for monitoring/initializing
the data bus., During program execution, the logical OR of
OBREQ* and IBACK* is always one. Consequently three
significant actionr occur, One is that the hexidecimal
display, D4X, is blanked. Another is that the toggling
action of SWI0X is blocked from C3X. The third is that the
output buffer, B2X, is disabled. When the RDT is in I1I/0
mode, OBREQ* and IBACK* are zero. The result is that D4X is
no longer blanked and SW10X increments the C3X counter.
Combined with a write request, WR* = 0, OBREQ* and IBACK¥
also enables C3X to be incremented and allows its output to
pass to the data bus. During read operations WR* = 1 and
again B2X is disabled. However, C3X is enabled in its
latched mode, passing information from the data bus to D4X.

Figure 21 shows the circuit for monitoring/initializing
the address bus. When the RDT is in its program execution
mode, C3X acts as a latched buffer, passing appropriate
information to and blocking undesireable bus activity from

D4X. During execution of an instruction, the address and

246

data busses change several times. Consequently, control
signals determine the proper time for latching information
into C3X. The desired information is available when IS0 and
ISl are both high, indicating an operation code fetch cycle,
and RD* is low (Ref 24:4~13). Under these conditions CT/LD*
equals zero and bus information is latched into the counter.

When the RDT is in its I/0 mode OBREQ*, IBACK*, IS0, and
ISl are low, and the CT/LD¥* pin of C3X is high. This
disables additional information from latching into the
counter from IR busses, and allows the IR address bus to be
initialized. Initialization involves incrementing C3X to a
desired value using SW10X., The OR gate connected between
SW10X and C3X stops count pulses from reaching C3X unless the
RDT has contol. So, even though C3X is usually count enabled
(CT/LD*=1), count clock pulses (CLK1l*) are blocked from C3X
unless the RDT 1is in an I/0 mode.

IR Reset. The NSC800 and its peripheral controllers are

reset whenever the RESET~IN* pin of the CPU is grounded.
Figure 22 is a schematic of the circuit used to ground
RESET-IN%*, The diagram consists entirely of a switch
debouncer.

A data FF with preset and clear inputs works well for
switch debouncing., With the CLK input tied low, data inputs
to the FF are disabled and output is dependent on only the
preset and clear inputs. At any time only ome of either the
preset or clear inputs is low. The output of the FF reflects

the switch position, When the switch is changed, voltage

*+5
l/
2lp CIR AQl&—T®ESET N
SWii2 SRES $J3

A
P

WT—=CLK] &
- T F

Figure 22. IR Reset Function.

spikes appear as the switch disconnects from one terminal and
as 1t connects to the other. These two causes of spikes are
mutually exclusive, So, the FF reflects switch positioning
without intermittent voltage spikes.

Single Step. The power save feature of the NSC800

proe

allows inplementation of a single step function. During the
last clock cycle of each instruction, the PS* pin of the
NSC800 is sampled; and when found in a low state, program

execution is suspended. The NSC800 Microprocessor Family

Handbook suggests a way of using this feature to contro. a

single ste;y functiom, (Ref 24:4-23)

In general, single stepping works by holding PS* low
until time for a step. Then PS* is set high, allowing

program execution to continue. Before the current

248

instruction completes, the RD* strobe from the operation code
fetch cycle clears PS* and again execution is suspended. The
result is that only one instruction is executed every time
PS* is toggled high.

Figure 23 shows the circuit used for implementing single
stepping within the RDT, The circuit effectively works as
outlined above. However, RDT complexity requires that
enhancements be made to tailor single step functioning.

The first enhancement provides a switch to allow a
choice between normal program execution and single step
execution., In its "RUN" position, the switch provides a high
input to two OR gates. This effectively blocks single step
actions by maintaining OPS* and OWAIT* high., In its "S/S"
position, a low signal is input to the blocking gates,
allowing step toggling to control OPS* and OWAIT¥,

The requirement for a wait state to be generated
externally from the IR results from the interaction of the
ALE pulse generated by the NSC800 and the wait state
generation circuitry. ALE is held high whenever the NSC80F.
is in a power save mode, PS* = 0 (Ref 24:4-~23). But wali:
states are valid for only one machine cycle after ALE goes
high. The facts that a single step operation extends across
many machine cycles while PS* = 0, anc the first CPU
operation performed after PS* goes high is an operation code
fetch from EEPROM, require that an external wait state be

generated.

249

t5
K KD
BREQ ol
, / ~ IWAIT
swioe |s, —0 IR)5 2[3CIR
RUN Se Tu704 43
: b 3
ClKsz Clpg &] ; U7~
- 4 4
+4 ‘
SWIO7 InoP *5 ‘
"STEP 13 [5
- 2o CL 12l CLR
a P 5 Al
nl. S7 2 g L q -LL;‘,'
CLK— @ = =g
’ 10 4 10
»
% +5
+5

Figure 23. Single Step Function.

Another enhancement involves RDT requests for control of
the IR bus structure. Since the NSC800 only samples BREQ*™
during the last clock cycle of an instruction (Ref 24:4-12),
at least one instruction must execute before bus control is
relinquished., The lower right-hand FF of Figure 23 is the
component which insures at least one is executed. Upon

activation of BREQ, a one is latched into this FF. The one

250

then passes through an OR gate, causing the upper right-hand
FF to latch a one onto OPS* and a zero onto OWAIT*, Both

latches are reset by the RD* strobe which originates during

an operation code fetch cycle. While this action insures one
instruction is executed, all is in vain if SW6 is set to
"RUN". Either way, an instruction is executed, allowing
OBREQ* to be recognized.

Input/Qutput. I/0 operations can be performed on both

memory and peripheral devices. Setting either SW108 or SW109

selects a type of I/0 device and enables RDT I/0. SW110 and

SW11ll determine the type of I/0 operation and when it will be

performed. Figure 24 shows the I/0 portion of RDT circuitry.)
For discussion, Figure 24 is divided at output pin 6 of U81.

This splits the diagram into a bus requesting circuit and an

I/0 strobe generating circuit.

Before an I/0 operation can proceed, the RDT must gain
control of the IR busses. The first step in getting control
is to request it by setting OBREQ* low. When SW108 = "MEM"
or SW109 = "PER", one of the switch debouncers will cause the
pin 10 of U82 to change from its normally high output state.
A low output from U82 is used as the bus request signal -
OBREQ*., The IR processor recognizes that OBREQ* = 0 before
fetching another instruction, and responds by setting IBACK*
low. This response indicates that the RDT has control of the
IR busses and causes output pin 6 of U8l to go low. This low
output enables the I/0 strobe generating portion of the the

diagram,

251

LR
Q
& Fuso zi2
A A
7422/

7 b
%—44—

Figure 24. Memory/Peripheral I/0 Circuit.

SW110 determines whether a read or a write will be
performed by allowing toggle pulses to reach an appropriate
74221, ome-shot. Once enabled by the OBREQ*/IBACK¥* sequence,
pulses from the SW1ll momentary switch are applied through
these enable gates to the falling edge triggers of one-shots.
Qutputs from the one~shots are pulses of known width that are
used for the ORD* and OWR* strobes. The width of each strobe
is determined by the I/0 circuit with the longest pulse
requirements. EEPROM's, with a typical access time of 500

nanoseconds (Ref 12), require the longest read strobe of any

252

memory or peripheral circuit., Allowing for possible atypical
operation, the ORD* generating one-shot 1is tuned to 600
nanoseconds, The OWR* strobe width is set at 200
nanoseconds., This time is governed by the NSC810 I/0 port

(Ref 24:A-27), the slowest device that can be written to by

the RDT.
IC Map

In general, IC's are grouped by the RDT function they
support., Figure 25 illustrates the relative position of IC
groups as they appear on the RDT wirewrap card., In addition,
naming conventions used in previous schematic diagrams help
identify IC functions. Letter prefixes and their meaning
are:

Buffer,

Bus Connector,
Counter,

Display,

Resistor Pack,

Switch Debouncers,
Switch, and

Individual Operationmns.

[}

=

cunO@oOowow

The "U" group is further broken down so that
U6 = Display/Initialize Operation,
U7 = Single Step, and
U8 = I/0 Operation.
Table XV is a more definitive list of the IC functions used
in the RDT.
IC sockets on the RDT wirewrap card do not contain the

prefixes described above. Instead, only the number following

the letter prefix is found on the sockets. Numbering

253

e e

consistency provides the correlation between the schematic

diagrams and the wirewrap sockets.

1/0 ADDRESS DISPLAY B i
DEBOUNCERS U |

F
F ‘
SINGLE STEP E i
DATA R]

DISPLAY RESISTOR S
MONITOR PACKS p

BUFFERS '

Figure 25. RDT IC Functional Groupings.

TABLE XVI g

RDT IC Listing

- R - - - D . o P S - - S ew e e S . . . -

Device Functional Schematic
Type Designation Reference
J
5082 Hexidecimal LED Display D40-D45
7400 Quad 2-input NAND Gates U61,U81
7402 Quad 2-input NOR Gates U60,082
7417 Hex Open-Collector Buffer B28 ‘
7432 Quad 2-input OR Gates B29,U62,
U63,071
7474 Dual D-type Flip-Flops §1-s813,U70
74197 Presettable Binary Counter €30-C35
74221 Dual Monostable Multivibrator US80
74244 0ctal Tri-State Buffers B20-B22
82PC08 Bidirectional Transceiver B23-B27
1K x 8 Resistor Pack R90,R92,
R94,R96-R99
255

Appendix E

Manufacturers' Data Sheets

This appendix contains manufacturers' data sheets for
the IC components used in the IR prototype. However, they
are not published with the thesis. Instead, they are on file

at AFIT/EN, Wright-Patterson AFB, OH, 45423.

256

VITA

Robert Eugene Meisner was borm on 10 September 1952 at
the Carlisle Barracks, Pennsylvania. Being a member of a
military family he attended many schools before graduating
from high school in 0O0lla, Louisiana. Continuing his
education in Louisiana, he earned a Bachelor of Science
degree in Computer Science in May 1974. Upon graduation, he
recieved a commision in the US Army through the ROTC program,
While in the Army he held positions as an AUTODIN terminals
programmer, a company executive officer, and a battalion
supply staff officer. In August 1977, he recieved an
interservice transfer to the USAF and was assigned to Hq SAC,
He spent his entire tour as a computer systems analyst,
supporting SIOP production before being accepted to AFIT. He

entered the AFIT, School of Engineering in June 19890.

Permanent Address: 29 Halsey Drive

Marietta, GA 30062

257

ied “
SECURITY CLASSIFICATION OF THIS PAGE (Wnhen Data Entered)
READ INSTRUCTIONS

[T REPORT NUMBER lz. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALGG NUMBER
AFIT/GCS/EE/82M-5 |

4. TITLE (and Subtitle) S. TYPE OF REPORT & RERIOD COVERED
AN INFLIGHT RECORDER PROTOTYPE FCR THE MS THESIS

INFLIGRT PHYSIOLOGICAL DATA ACQUISITION 6. PERFORMING ORG. REPORYT NUMBER
SYSTEM III

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)

Robert E. Meisner, Captain, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson Air Force Base, COhio 45433

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

School of Aerospace Medicine February 1982

Crew Systems Division (SAM/VNB) 3. NUMBER OF PAGES

Brooks AFB, Texas 78235 271

14. MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) 15, SECURITY CLASS. (of this report)
Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEQULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public releasejdistribution unlimited

t7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different from Report)

8. SUPPLEMENTARY NOTES AP ED FOR PUBLIC RELEASE: iAVY AFR]9(, i,)
AR FORCE LiTTnE OF ' ‘
SN E WOLAVER WRIGHT-PATTZRSCON AP, .

"Deon for Research an

19. KEY WORDS (Contjp ﬁumd Tdentify by block number)
Inflight Physiological Data Acquistion System (IFPDAS)
Complementary Metal-Oxide Semiconductor

Electrically Erasable Programmable Read-Only Memory
Magnetic Bubble Memory Remote Data Acquisition Microprocessor
Microcomputer Analog to Digital Conversion

20. ABSTRACT (Continue on reverse side !f necessary end identify by block number)

See reverse

Pt e e

DD , 5%, 1473 eoimion oF 1 NoV 68 18 oBsOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

' Unclassified
SECURITY CLASSIFICATION OF THiS PAGE(When Data Entered)

! Block 20,

]

f

A prototype for the Inflight Recorder component of the Inflight
Physiological Data Acquisition System was built, The Inflight Recorder
is a remote data acquisition computer for sampling physiological data.
Characteristics of the recorder's design were solid-state, i
microprocessor controlled, expandability, 16 sensor inputs, and 122
samples per second. Demonstration of battery operation for four hours
and unobstructive size characteristics awaits further testing. :

Following a hardware requirements analysis, the prototype was
built wusing Complementary Metal Oxide Semiconductor (CMOS) integrated p
circuits. Components featured in the design were a CMOS
microprocessor; Electrically Erasable Programmable Read Only Memories
(EEPROM); a monolithic, 16 channel, analog to digital converter; and
Magnetic Bubble Memories (MBM), i

In addition to building the IR prototype, several development
tools were constructed. One was a EEPROM Programmer. Another was an o
MBM Interactive Development System., A third was a hardware front panel
for debugging IR software. User's manuals for these tools appear in
appendices to the thesis.

g3

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Unclassified

